J. R. Borges-Zampiva, B. Oréfice-Okamoto, G. Peñafort Sanchis,J.N. Tomazella Departamento de Matemática, Universidade Federal de São Carlos, Caixa Postal 676, 13560-905, São Carlos, SP, BRAZIL jrbzampiva@estudante.ufscar.br Departament de Matemàtiques,Universitat de València, Campus de Burjassot, 46100 BurjassotSPAIN. guillermo.penafort@uv.es Departamento de Matemática, Universidade Federal de São Carlos, Caixa Postal 676,13560-905, São Carlos, SP, BRAZIL brunaorefice@ufscar.br Departamento de Matemática, Universidade Federal de São Carlos, Caixa Postal 676,13560-905, São Carlos, SP, BRAZIL jntomazella@ufscar.br
Abstract. A reflection mapping is a singular holomorphic mapping obtained by restricting the quotient mapping of a complex reflection group. We study the analytic structure of double point spaces of reflection mappings. In the case where the image is a hypersurface, we obtain explicit equations for the double point space and for the image as well. In the case of surfaces in ℂ 3 superscript ℂ 3 \displaystyle\mathbb{C}^{3} blackboard_C start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , this gives a very efficient method to compute the Milnor number and delta invariant of the double point curve.
Key words and phrases: Reflection groups, singular mappings, multiple points
2000 Mathematics Subject Classification: Primary 32S25; Secondary 58K40, 32S50
The first author has been partially supported by CAPES. The second author has been suported by Grant PGC2018-094889-B-100 funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way of making Europe”. The third has been supported by FAPESP-Grant 2022/15458-1. The third and fourth author have been partially supported by FAPESP Grant 2019/07316-0.
1. IntroductionIn the theory of singular mappings, there are few known examples which are degenerate and also have desirable properties. The problem, rather than an actual lack of mappings of this kind, seems to be the difficulty of the calculations.Reflection mappings were introduced in the prequel of this work [17 ] , as a means to produce degenerate mappings which are easy to understand. This stablished the existence of the examples we were looking for in certain dimensions. In this paper we go one step further and show how to compute the double point spaces—and, in the hypersurface case, the image as well— for reflection mappings. In short, a reflection mapping is a holomorphic singular mapping 𝒴 → ℂ p → 𝒴 superscript ℂ 𝑝 \displaystyle\mathcal{Y}\to\mathbb{C}^{p} caligraphic_Y → blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT obtained by restricting the quotient map of a reflection group W 𝑊 \displaystyle W italic_W to a submanifold 𝒴 𝒴 \displaystyle\mathcal{Y} caligraphic_Y of the vector space 𝒱 𝒱 \displaystyle\mathcal{V} caligraphic_V where the group acts (see Section 2 for details). The idea is that the group action, together with the way 𝒴 𝒴 \displaystyle\mathcal{Y} caligraphic_Y sits in 𝒱 𝒱 \displaystyle\mathcal{V} caligraphic_V , must encode the geometry of the mapping.
The reflection mapping class contains the first families of quasi-homogeneous finitely determined map-germs ( ℂ n , 0 ) → ( ℂ p , 0 ) → superscript ℂ 𝑛 0 superscript ℂ 𝑝 0 \displaystyle(\mathbb{C}^{n},0)\to(\mathbb{C}^{p},0) ( blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , 0 ) → ( blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT , 0 ) having unbounded multiplicity, for arbitrary n 𝑛 \displaystyle n italic_n and p = 2 n − 1 𝑝 2 𝑛 1 \displaystyle p=2n-1 italic_p = 2 italic_n - 1 or p = 2 n 𝑝 2 𝑛 \displaystyle p=2n italic_p = 2 italic_n [17 , Theorems 9.5 and 9.6] (see Example 2.5 for low dimensional examples). These mappings where later shown by Ruas and Silva to be counterexamples to a long standing conjecture of Ruas [21 ] . Brasselet, Thuy and Ruas used them to show the density of the finitely determined mappings among certain spaces of quasi-homogeneous mappings [2 ] . Silva noticed that these reflection mappings show that the topological type of a generic transverse slice, in the case of 𝒜 𝒜 \displaystyle\mathcal{A} caligraphic_A -finite quasihomogeneous mappings, is not determined by their weights and degrees [22 ] . Rodrigues Hernandes and Ruas have shown that every finitely determined monomial mapping ( ℂ n , 0 ) → ( ℂ p , 0 ) → superscript ℂ 𝑛 0 superscript ℂ 𝑝 0 \displaystyle(\mathbb{C}^{n},0)\to(\mathbb{C}^{p},0) ( blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , 0 ) → ( blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT , 0 ) , with p ≥ 2 n 𝑝 2 𝑛 \displaystyle p\geq 2n italic_p ≥ 2 italic_n , is a reflection mapping [19 ] . In contrast, for p < 2 n − 1 𝑝 2 𝑛 1 \displaystyle p<2n-1 italic_p < 2 italic_n - 1 , the only finitely determined reflection mappings are folding maps [17 , Theorem 8.5] . Reflection mappings were also shown to satisfy an extended version of Lê’s conjecture, a rather misterious problem relating injectivity and corank [17 , Proposition 4.3] .
Apart from the theory of singular mappings, reflection mappings have proven to be relevant in differential geometry. The original idea is due to Bruce and Wilkinson [3 , 4 ] , who noticed that the singularities produced by folding a surface with respect to a plane (in our terminology these are ℤ / 2 ℤ 2 \displaystyle\mathbb{Z}/2 blackboard_Z / 2 -reflection mappings) reveal interesting extrinsic information of the surface. This idea has since been extended to the other spaces [1 , 7 , 15 ] as well as to different reflection groups [18 ] . The reflection mappings used by Bruce and Wilkinson are known as folding mappings and have been widely studied (apart from the previous references, see [6 ] ). They belong to a subclass called reflected graphs [17 , Definition 13] , which we describe in Example 2.4 . This class includes other previously studied classes of mappings, such as double folds [8 , 16 ] and k 𝑘 \displaystyle k italic_k -folding mappings [18 ] . Double folds provided the first examples of finitely determined quasi-homogeneous corank two map-germs. Inspecting the classification of all simple map germs ( ℂ 2 , 0 ) → ( ℂ 3 , 0 ) → superscript ℂ 2 0 superscript ℂ 3 0 \displaystyle(\mathbb{C}^{2},0)\to(\mathbb{C}^{3},0) ( blackboard_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , 0 ) → ( blackboard_C start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , 0 ) [12 ] reveals that they are either folding mappings or 3 3 \displaystyle 3 3 -folding mappings.
Now we can discuss the content of the present work. Singular mappings are understood via the study of their multiple point spaces, the most fundamental of which are the double point spaces. Moreover, given the coordinate functions of a map-germ ( ℂ n , 0 ) → ( ℂ n + 1 , 0 ) → superscript ℂ 𝑛 0 superscript ℂ 𝑛 1 0 \displaystyle(\mathbb{C}^{n},0)\to(\mathbb{C}^{n+1},0) ( blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , 0 ) → ( blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT , 0 ) , one would like to know the equation of its image. As it turns out, both the image and the double points spaces become degenerate very fast as the complexity of the coordinate functions increases. We show how to study these objects for reflection mappings, in a much simpler way than in the case of arbitrary singular mappings. In the hypersurface case, the image of reflection mappings is described as well.
For reflection mappings, there are three decompositions of double point spaces indexed by the reflection group, namely
K 2 ( f ) = ⋃ σ ∈ W ∖ { 1 } K 2 σ ( f ) , D 2 ( f ) = ⋃ σ ∈ W ∖ { 1 } D 2 σ ( f ) , D ( f ) = ⋃ σ ∈ W ∖ { 1 } D σ ( f ) . formulae-sequence subscript 𝐾 2 𝑓 subscript 𝜎 𝑊 1 superscript subscript 𝐾 2 𝜎 𝑓 formulae-sequence superscript 𝐷 2 𝑓 subscript 𝜎 𝑊 1 superscript subscript 𝐷 2 𝜎 𝑓 𝐷 𝑓 subscript 𝜎 𝑊 1 subscript 𝐷 𝜎 𝑓 \displaystyle K_{2}(f)=\bigcup_{\sigma\in W\setminus\{1\}}K_{2}^{\sigma}(f),%\qquad D^{2}(f)=\bigcup_{\sigma\in W\setminus\{1\}}D_{2}^{\sigma}(f),\qquad D(%f)=\bigcup_{\sigma\in W\setminus\{1\}}D_{\sigma}(f). italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) = ⋃ start_POSTSUBSCRIPT italic_σ ∈ italic_W ∖ { 1 } end_POSTSUBSCRIPT italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) , italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) = ⋃ start_POSTSUBSCRIPT italic_σ ∈ italic_W ∖ { 1 } end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) , italic_D ( italic_f ) = ⋃ start_POSTSUBSCRIPT italic_σ ∈ italic_W ∖ { 1 } end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) .
These decompositions appeared in [17 , Sections 6 and 7] already, but just at the set theoretical level. In contrast, here the analytic structure of the branches K 2 σ ( f ) superscript subscript 𝐾 2 𝜎 𝑓 \displaystyle K_{2}^{\sigma}(f) italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) , D 2 σ ( f ) superscript subscript 𝐷 2 𝜎 𝑓 \displaystyle D_{2}^{\sigma}(f) italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) and D σ ( f ) subscript 𝐷 𝜎 𝑓 \displaystyle D_{\sigma}(f) italic_D start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_f ) is described explicitly. These analytic structures are a fundamental part of the theory of singular mappings, which requires K 2 ( f ) subscript 𝐾 2 𝑓 \displaystyle K_{2}(f) italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) , D 2 ( f ) superscript 𝐷 2 𝑓 \displaystyle D^{2}(f) italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) and D ( f ) 𝐷 𝑓 \displaystyle D(f) italic_D ( italic_f ) to be complex spaces, sometimes with a non-reduced structure indicating higher degeneracy.
For arbitrary mappings 𝒴 → ℂ n + 1 → 𝒴 superscript ℂ 𝑛 1 \displaystyle\mathcal{Y}\to\mathbb{C}^{n+1} caligraphic_Y → blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT with dim 𝒴 = n dim 𝒴 𝑛 \displaystyle\operatorname{dim}\mathcal{Y}=n roman_dim caligraphic_Y = italic_n , the double point space D ( f ) ⊂ 𝒴 𝐷 𝑓 𝒴 \displaystyle D(f)\subset\mathcal{Y} italic_D ( italic_f ) ⊂ caligraphic_Y and the image Im f ⊂ ℂ n + 1 Im 𝑓 superscript ℂ 𝑛 1 \displaystyle\operatorname{Im}f\subset\mathbb{C}^{n+1} roman_Im italic_f ⊂ blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT are hypersurfaces (or more precisely, complex spaces defined locally by principal ideals, as they are not always reduced), but computing their equations is usually very hard. One of the main achievements of this work are the explicit formulas
Im f = V ( ∏ σ ∈ W ( σ L ) ∘ s ) , D ( f ) = V ( ∏ σ ∈ W ∖ { 1 } λ σ ) formulae-sequence Im 𝑓 𝑉 subscript product 𝜎 𝑊 𝜎 𝐿 𝑠 𝐷 𝑓 𝑉 subscript product 𝜎 𝑊 1 subscript 𝜆 𝜎 \displaystyle\operatorname{Im}f=V\Big{(}\prod_{\sigma\in W}(\sigma L)\circ s%\Big{)},\qquad D(f)=V\Big{(}\prod_{\sigma\in W\setminus\{1\}}\lambda_{\sigma}%\Big{)} roman_Im italic_f = italic_V ( ∏ start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT ( italic_σ italic_L ) ∘ italic_s ) , italic_D ( italic_f ) = italic_V ( ∏ start_POSTSUBSCRIPT italic_σ ∈ italic_W ∖ { 1 } end_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT )
for reflection mappings. As a bonus, the formula for D ( f ) 𝐷 𝑓 \displaystyle D(f) italic_D ( italic_f ) gives a much faster way to compute the Milnor number and delta invariant of D ( f ) 𝐷 𝑓 \displaystyle D(f) italic_D ( italic_f ) for germs of reflection mappings 𝒴 2 → ℂ 3 → superscript 𝒴 2 superscript ℂ 3 \displaystyle\mathcal{Y}^{2}\to\mathbb{C}^{3} caligraphic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_C start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT .
2. Notation and preliminariesIn this section we summarize the prerequisites and set the notation for reflection groups and reflection mappings. For a more detailed account and proper citations, we refer to [17 ] .To avoid repetition, we fix the meaning of the symbols and notations summarized in this section, which will not be reintroduced.
Reflection groups and the orbit mapping Throughout the text, W 𝑊 \displaystyle W italic_W stands for a (complex) reflection group acting on a ℂ ℂ \displaystyle\mathbb{C} blackboard_C -vector space 𝒱 𝒱 \displaystyle\mathcal{V} caligraphic_V . We write p = dim 𝒱 𝑝 dim 𝒱 \displaystyle p=\operatorname{dim}\mathcal{V} italic_p = roman_dim caligraphic_V .
The orbit of a subset S ⊆ 𝒱 𝑆 𝒱 \displaystyle S\subseteq\mathcal{V} italic_S ⊆ caligraphic_V (or better, the union of the orbits of the points in S 𝑆 \displaystyle S italic_S ) is denoted by W S ⊆ 𝒱 𝑊 𝑆 𝒱 \displaystyle WS\subseteq\mathcal{V} italic_W italic_S ⊆ caligraphic_V .We adopt the convention that the action of σ ∈ W 𝜎 𝑊 \displaystyle\sigma\in W italic_σ ∈ italic_W on a function H 𝐻 \displaystyle H italic_H in 𝒪 𝒱 subscript 𝒪 𝒱 \displaystyle\mathcal{O}_{\mathcal{V}} caligraphic_O start_POSTSUBSCRIPT caligraphic_V end_POSTSUBSCRIPT is( σ H ) ( u ) = H ( σ − 1 u ) . 𝜎 𝐻 𝑢 𝐻 superscript 𝜎 1 𝑢 \displaystyle(\sigma H)(u)=H(\sigma^{-1}u). ( italic_σ italic_H ) ( italic_u ) = italic_H ( italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_u ) . Hence, a zeroset S = V ( J ) 𝑆 𝑉 𝐽 \displaystyle S=V(J) italic_S = italic_V ( italic_J ) is transformed by σ 𝜎 \displaystyle\sigma italic_σ into the set σ S = { σ u ∣ u ∈ S } = V ( σ J ) 𝜎 𝑆 conditional-set 𝜎 𝑢 𝑢 𝑆 𝑉 𝜎 𝐽 \displaystyle\sigma S=\{\sigma u\mid u\in S\}=V(\sigma J) italic_σ italic_S = { italic_σ italic_u ∣ italic_u ∈ italic_S } = italic_V ( italic_σ italic_J ) .The stabilizer of S 𝑆 \displaystyle S italic_S is
W S = { σ ∈ W ∣ σ S = S } . superscript 𝑊 𝑆 conditional-set 𝜎 𝑊 𝜎 𝑆 𝑆 \displaystyle W^{S}=\{\sigma\in W\mid\sigma S=S\}. italic_W start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT = { italic_σ ∈ italic_W ∣ italic_σ italic_S = italic_S } .
and the pointwise stabilizer of S 𝑆 \displaystyle S italic_S is
W S = { σ ∈ W ∣ σ u = u , for all u ∈ S } . subscript 𝑊 𝑆 conditional-set 𝜎 𝑊 formulae-sequence 𝜎 𝑢 𝑢 for all 𝑢 𝑆 \displaystyle W_{S}=\{\sigma\in W\mid\sigma u=u,\text{ for all }u\in S\}. italic_W start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT = { italic_σ ∈ italic_W ∣ italic_σ italic_u = italic_u , for all italic_u ∈ italic_S } .
W S superscript 𝑊 𝑆 \displaystyle W^{S} italic_W start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT is the maximal subgroup of W 𝑊 \displaystyle W italic_W acting on S 𝑆 \displaystyle S italic_S . The pointwise stabilizer W S subscript 𝑊 𝑆 \displaystyle W_{S} italic_W start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT is a normal subgroup of W S superscript 𝑊 𝑆 \displaystyle W^{S} italic_W start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT and the quotient W S / W S superscript 𝑊 𝑆 subscript 𝑊 𝑆 \displaystyle W^{S}/W_{S} italic_W start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT / italic_W start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT acts faithfully on S 𝑆 \displaystyle S italic_S .
The union of the reflecting hyperplanes of all reflections in W 𝑊 \displaystyle W italic_W is called the hyperplane arrangement and is written as𝒜 ⊂ 𝒱 𝒜 𝒱 \displaystyle\mathscr{A}\subset\mathcal{V} script_A ⊂ caligraphic_V .The reflecting hyperplanes induce a partition of 𝒱 𝒱 \displaystyle\mathcal{V} caligraphic_V into subsets, called facets, consisting of those points contained in exactly the same hyperplanes. The set of facets is denoted by 𝒞 𝒞 \displaystyle\mathscr{C} script_C and called the complex of W 𝑊 \displaystyle W italic_W .Clearly, facets C ∈ 𝒞 𝐶 𝒞 \displaystyle C\in\mathscr{C} italic_C ∈ script_C are open subsets of linear subspaces, hence have the same tangent everywhere, which may be identified with the closure C ¯ ¯ 𝐶 \displaystyle\overline{C} over¯ start_ARG italic_C end_ARG . Similarly, we often write C ⊥ superscript 𝐶 bottom \displaystyle C^{\bot} italic_C start_POSTSUPERSCRIPT ⊥ end_POSTSUPERSCRIPT instead of T y C ⊥ subscript 𝑇 𝑦 superscript 𝐶 bottom \displaystyle T_{y}C^{\bot} italic_T start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_C start_POSTSUPERSCRIPT ⊥ end_POSTSUPERSCRIPT , for any y ∈ C 𝑦 𝐶 \displaystyle y\in C italic_y ∈ italic_C .
The celebrated Shephard-Todd-Chevalley Theorem characterizes reflection groups as the only subgroups of the group of unitary transformations of 𝒱 𝒱 \displaystyle\mathcal{V} caligraphic_V for which the quotient mapping 𝒱 → 𝒱 / W → 𝒱 𝒱 𝑊 \displaystyle\mathcal{V}\to\mathcal{V}/W caligraphic_V → caligraphic_V / italic_W can be realized as a polynomial mapping
ω : 𝒱 → ℂ p : 𝜔 → 𝒱 superscript ℂ 𝑝 \displaystyle\omega\colon\mathcal{V}\to\mathbb{C}^{p} italic_ω : caligraphic_V → blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT
whose coordinate functions ω 1 , … , ω p subscript 𝜔 1 … subscript 𝜔 𝑝
\displaystyle\omega_{1},\dots,\omega_{p} italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_ω start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT are homogeneous polynomials (they are a set of generators of the ring of W 𝑊 \displaystyle W italic_W -invariant polynomials). More geometrically, the map ω 𝜔 \displaystyle\omega italic_ω identifies an orbit to a point, that is, for any u ∈ 𝒱 𝑢 𝒱 \displaystyle u\in\mathcal{V} italic_u ∈ caligraphic_V , we have that ω − 1 ( ω ( u ) ) = W u superscript 𝜔 1 𝜔 𝑢 𝑊 𝑢 \displaystyle\omega^{-1}(\omega(u))=Wu italic_ω start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_ω ( italic_u ) ) = italic_W italic_u .
Reflection groups act faithfully, hence ω 𝜔 \displaystyle\omega italic_ω is generically | W | 𝑊 \displaystyle|W| | italic_W | -to-one, and it is well known that the ramification locus is precisely the hyperplane arrangement. More precissely, given a point u ∈ 𝒱 𝑢 𝒱 \displaystyle u\in\mathcal{V} italic_u ∈ caligraphic_V , contained in a facet C ∈ 𝒞 𝐶 𝒞 \displaystyle C\in\mathscr{C} italic_C ∈ script_C , we have that ker d ω u = C ⊥ kernel d subscript 𝜔 𝑢 superscript 𝐶 bottom \displaystyle\ker\operatorname{d}\!\omega_{u}=C^{\bot} roman_ker roman_d italic_ω start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT = italic_C start_POSTSUPERSCRIPT ⊥ end_POSTSUPERSCRIPT .
By the universal property of quotient mappings, the mapping ω 𝜔 \displaystyle\omega italic_ω is well defined up to ℒ ℒ \displaystyle\mathcal{L} caligraphic_L -equivalence (that is, up to changes of coordinates in the target). As it will become clear, replacing ω 𝜔 \displaystyle\omega italic_ω by an ℒ ℒ \displaystyle\mathcal{L} caligraphic_L -equivalent map does not change the 𝒜 𝒜 \displaystyle\mathcal{A} caligraphic_A -class of the associated reflection mappings. Since we study reflection mappings up to 𝒜 𝒜 \displaystyle\mathcal{A} caligraphic_A -equivalence, we may pretend ω 𝜔 \displaystyle\omega italic_ω to be unique, and abusively call it the orbit map of W 𝑊 \displaystyle W italic_W .
Example 2.1 (Products of cyclic groups). The product ℤ / d 1 × ⋯ × ℤ / d p ℤ subscript 𝑑 1 ⋯ ℤ subscript 𝑑 𝑝 \displaystyle\mathbb{Z}/{d_{1}}\times\dots\times\mathbb{Z}/{d_{p}} blackboard_Z / italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT × ⋯ × blackboard_Z / italic_d start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT is a reflection group acting on ℂ p superscript ℂ 𝑝 \displaystyle\mathbb{C}^{p} blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT by
( a 1 , … , a p ) ⋅ ( u 1 , … , u p ) = ( ξ 1 a 1 u 1 , … , ξ p a p u p ) , with ξ j = e 2 π i d j . ⋅ subscript 𝑎 1 … subscript 𝑎 𝑝 subscript 𝑢 1 … subscript 𝑢 𝑝 superscript subscript 𝜉 1 subscript 𝑎 1 subscript 𝑢 1 … superscript subscript 𝜉 𝑝 subscript 𝑎 𝑝 subscript 𝑢 𝑝 , with subscript 𝜉 𝑗 superscript 𝑒 2 𝜋 𝑖 subscript 𝑑 𝑗 \displaystyle(a_{1},\dots,a_{p})\cdot(u_{1},\dots,u_{p})=(\xi_{1}^{a_{1}}u_{1}%,\dots,\xi_{p}^{a_{p}}u_{p})\text{, with }\xi_{j}=e^{\frac{2\pi i}{d_{j}}}. ( italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ⋅ ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_u start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) = ( italic_ξ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_ξ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_u start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) , with italic_ξ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_e start_POSTSUPERSCRIPT divide start_ARG 2 italic_π italic_i end_ARG start_ARG italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_ARG end_POSTSUPERSCRIPT .
An element ( a 1 , … , a p ) subscript 𝑎 1 … subscript 𝑎 𝑝 \displaystyle(a_{1},\dots,a_{p}) ( italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) is a reflection if and only if exactly one a i subscript 𝑎 𝑖 \displaystyle a_{i} italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is nonzero. The orbit map is defined by ω ( u 1 , … , u p ) = ( u 1 d 1 , … , u p d p ) . 𝜔 subscript 𝑢 1 … subscript 𝑢 𝑝 superscript subscript 𝑢 1 subscript 𝑑 1 … superscript subscript 𝑢 𝑝 subscript 𝑑 𝑝 \displaystyle\omega(u_{1},\dots,u_{p})=(u_{1}^{d_{1}},\dots,u_{p}^{d_{p}}). italic_ω ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_u start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) = ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , … , italic_u start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) .
Example 2.2 (Dihedral groups, D 2 n subscript 𝐷 2 𝑛 \displaystyle D_{2n} italic_D start_POSTSUBSCRIPT 2 italic_n end_POSTSUBSCRIPT ). These are the groups of symmetries of regular polygon of n 𝑛 \displaystyle n italic_n sides. We will use the group D 8 subscript 𝐷 8 \displaystyle D_{8} italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT , consisting of the identity, four reflections
σ 1 = ( 1 0 0 − 1 ) , σ 2 = ( 0 1 1 0 ) , σ 3 = ( − 1 0 0 1 ) , σ 4 = ( 0 − 1 − 1 0 ) formulae-sequence subscript 𝜎 1 1 0 0 1 formulae-sequence subscript 𝜎 2 0 1 1 0 formulae-sequence subscript 𝜎 3 1 0 0 1 subscript 𝜎 4 0 1 1 0 \displaystyle\sigma_{1}=\left(\begin{array}[]{cc}1&0\\0&-1\end{array}\right),\quad\sigma_{2}=\left(\begin{array}[]{cc}0&1\\1&0\end{array}\right),\quad\sigma_{3}=\left(\begin{array}[]{cc}-1&0\\0&1\end{array}\right),\quad\sigma_{4}=\left(\begin{array}[]{cc}0&-1\\-1&0\end{array}\right) italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL - 1 end_CELL end_ROW end_ARRAY ) , italic_σ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ) , italic_σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = ( start_ARRAY start_ROW start_CELL - 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) , italic_σ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT = ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL - 1 end_CELL end_ROW start_ROW start_CELL - 1 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY )
and three rotations
ρ 1 = ( 0 − 1 1 0 ) , ρ 2 = ( − 1 0 0 − 1 ) , ρ 3 = ( 0 1 − 1 0 ) . formulae-sequence subscript 𝜌 1 0 1 1 0 formulae-sequence subscript 𝜌 2 1 0 0 1 subscript 𝜌 3 0 1 1 0 \displaystyle\rho_{1}=\left(\begin{array}[]{cc}0&-1\\1&0\end{array}\right),\quad\rho_{2}=\left(\begin{array}[]{cc}-1&0\\0&-1\end{array}\right),\quad\rho_{3}=\left(\begin{array}[]{cc}0&1\\-1&0\end{array}\right). italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL - 1 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ) , italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = ( start_ARRAY start_ROW start_CELL - 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL - 1 end_CELL end_ROW end_ARRAY ) , italic_ρ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL - 1 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ) .
The orbit map of D 8 subscript 𝐷 8 \displaystyle D_{8} italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT is the mapping ω : ℂ 2 → ℂ 2 : 𝜔 → superscript ℂ 2 superscript ℂ 2 \displaystyle\omega\colon\mathbb{C}^{2}\to\mathbb{C}^{2} italic_ω : blackboard_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , given by
( u , v ) ↦ ( u 2 + v 2 , u 2 v 2 ) . maps-to 𝑢 𝑣 superscript 𝑢 2 superscript 𝑣 2 superscript 𝑢 2 superscript 𝑣 2 \displaystyle(u,v)\mapsto(u^{2}+v^{2},u^{2}v^{2}). ( italic_u , italic_v ) ↦ ( italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) .
Example 2.3 (The group 𝔖 4 subscript 𝔖 4 \displaystyle\mathfrak{S}_{4} fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT of symmetries of the tetrahedron). Consider a regular tetrahedron centered at the origin of ℝ 3 superscript ℝ 3 \displaystyle\mathbb{R}^{3} blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , for example the one with vertices
V 1 = ( 1 , 0 , − 1 2 ) V 2 = ( − 1 , 0 , − 1 2 ) , V 3 = ( 0 , 1 , 1 2 ) , V 4 = ( 0 , − 1 , 1 2 ) . formulae-sequence subscript 𝑉 1 1 0 1 2 formulae-sequence subscript 𝑉 2 1 0 1 2 formulae-sequence subscript 𝑉 3 0 1 1 2 subscript 𝑉 4 0 1 1 2 \displaystyle V_{1}=\left(1,0,\frac{-1}{\sqrt{2}}\right)\quad V_{2}=\left(-1,0%,\frac{-1}{\sqrt{2}}\right),\quad V_{3}=\left(0,1,\frac{1}{\sqrt{2}}\right),%\quad V_{4}=\left(0,-1,\frac{1}{\sqrt{2}}\right). italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = ( 1 , 0 , divide start_ARG - 1 end_ARG start_ARG square-root start_ARG 2 end_ARG end_ARG ) italic_V start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = ( - 1 , 0 , divide start_ARG - 1 end_ARG start_ARG square-root start_ARG 2 end_ARG end_ARG ) , italic_V start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = ( 0 , 1 , divide start_ARG 1 end_ARG start_ARG square-root start_ARG 2 end_ARG end_ARG ) , italic_V start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT = ( 0 , - 1 , divide start_ARG 1 end_ARG start_ARG square-root start_ARG 2 end_ARG end_ARG ) .
The group of unitary automorphisms of the tetrahedron is a reflection group, isomorphic as an abstract group to the permutation group 𝔖 4 subscript 𝔖 4 \displaystyle\mathfrak{S}_{4} fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT of its four vertices. This group is generated by the permutations ( i i + 1 ) 𝑖 𝑖 1 \displaystyle(i\;i+1) ( italic_i italic_i + 1 ) , which in matrix form are
( 1 2 ) = ( − 1 0 0 0 1 0 0 0 1 ) , ( 2 3 ) = 1 2 ( 1 − 1 − 2 − 1 1 − 2 − 2 − 2 0 ) , ( 3 4 ) = ( 1 0 0 0 − 1 0 0 0 1 ) . formulae-sequence 12 1 0 0 0 1 0 0 0 1 formulae-sequence 23 1 2 1 1 2 1 1 2 2 2 0 34 1 0 0 0 1 0 0 0 1 \displaystyle(1\;2)=\left(\begin{array}[]{ccc}-1&0&0\\0&1&0\\0&0&1\end{array}\right),\;(2\;3)=\frac{1}{2}\left(\begin{array}[]{ccc}1&-1&-%\sqrt{2}\\-1&1&-\sqrt{2}\\-\sqrt{2}&-\sqrt{2}&0\end{array}\right),\;(3\;4)=\left(\begin{array}[]{ccc}1&0%&0\\0&-1&0\\0&0&1\end{array}\right). ( 1 2 ) = ( start_ARRAY start_ROW start_CELL - 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) , ( 2 3 ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL - 1 end_CELL start_CELL - square-root start_ARG 2 end_ARG end_CELL end_ROW start_ROW start_CELL - 1 end_CELL start_CELL 1 end_CELL start_CELL - square-root start_ARG 2 end_ARG end_CELL end_ROW start_ROW start_CELL - square-root start_ARG 2 end_ARG end_CELL start_CELL - square-root start_ARG 2 end_ARG end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ) , ( 3 4 ) = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL - 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) .
The group 𝔖 4 subscript 𝔖 4 \displaystyle\mathfrak{S}_{4} fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT contains 6 6 \displaystyle 6 6 reflections, which are precisely the permutations ( i j ) 𝑖 𝑗 \displaystyle(i\;j) ( italic_i italic_j ) . The orbit map is
ω ( u , v , w ) = ( u 2 + v 2 + w 2 , ( u + v ) ( u − v ) w , ( 2 u 2 − w 2 ) ( 2 v 2 − w 2 ) ) . 𝜔 𝑢 𝑣 𝑤 superscript 𝑢 2 superscript 𝑣 2 superscript 𝑤 2 𝑢 𝑣 𝑢 𝑣 𝑤 2 superscript 𝑢 2 superscript 𝑤 2 2 superscript 𝑣 2 superscript 𝑤 2 \displaystyle\omega(u,v,w)=\big{(}u^{2}+v^{2}+w^{2},(u+v)(u-v)w,(2u^{2}-w^{2})%(2v^{2}-w^{2})\big{)}. italic_ω ( italic_u , italic_v , italic_w ) = ( italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_w start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , ( italic_u + italic_v ) ( italic_u - italic_v ) italic_w , ( 2 italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_w start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( 2 italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_w start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ) .
Reflection mappings Take an embedding h : 𝒳 ↪ 𝒱 : ℎ ↪ 𝒳 𝒱 \displaystyle h\colon\mathcal{X}\hookrightarrow\mathcal{V} italic_h : caligraphic_X ↪ caligraphic_V of an n 𝑛 \displaystyle n italic_n -dimensional complex manifold 𝒳 𝒳 \displaystyle\mathcal{X} caligraphic_X into 𝒱 𝒱 \displaystyle\mathcal{V} caligraphic_V . The image of h ℎ \displaystyle h italic_h is an n 𝑛 \displaystyle n italic_n -dimensional complex submanifold
𝒴 = h ( 𝒳 ) ⊆ 𝒱 . 𝒴 ℎ 𝒳 𝒱 \displaystyle\mathcal{Y}=h(\mathcal{X})\subseteq\mathcal{V}. caligraphic_Y = italic_h ( caligraphic_X ) ⊆ caligraphic_V .
A reflection mapping is a map obtained as the composition of the orbit map ω 𝜔 \displaystyle\omega italic_ω and the embedding h ℎ \displaystyle h italic_h , that is,
f = ω ∘ h : 𝒳 → ℂ p . : 𝑓 𝜔 ℎ → 𝒳 superscript ℂ 𝑝 \displaystyle f=\omega\circ h\colon\mathcal{X}\to\mathbb{C}^{p}. italic_f = italic_ω ∘ italic_h : caligraphic_X → blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT .
It is often convenient to replace h ℎ \displaystyle h italic_h by the inclusion 𝒴 ↪ 𝒱 ↪ 𝒴 𝒱 \displaystyle\mathcal{Y}\hookrightarrow\mathcal{V} caligraphic_Y ↪ caligraphic_V , obtaining a reflection mapping which, abusively, is also denoted
f = ω | 𝒴 : 𝒴 → ℂ p . : 𝑓 evaluated-at 𝜔 𝒴 → 𝒴 superscript ℂ 𝑝 \displaystyle f=\omega|_{\mathcal{Y}}\colon\mathcal{Y}\to\mathbb{C}^{p}. italic_f = italic_ω | start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT : caligraphic_Y → blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT .
The choice between these two equivalent settings will be clear from the context.To finish fixing our notation, locally at any point, 𝒴 𝒴 \displaystyle\mathcal{Y} caligraphic_Y is defined in 𝒱 𝒱 \displaystyle\mathcal{V} caligraphic_V by a collection of regular equations, which we write as
L = ( L 1 , … , L p − n ) = 0 . 𝐿 subscript 𝐿 1 … subscript 𝐿 𝑝 𝑛 0 \displaystyle L=(L_{1},\dots,L_{p-n})=0. italic_L = ( italic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_L start_POSTSUBSCRIPT italic_p - italic_n end_POSTSUBSCRIPT ) = 0 .
(technically, it would be better to express our results in terms of the ideal sheaf I ( 𝒴 ) 𝐼 𝒴 \displaystyle I(\mathcal{Y}) italic_I ( caligraphic_Y ) of holomorphic functions vanishing on 𝒴 𝒴 \displaystyle\mathcal{Y} caligraphic_Y . For the sake of clarity, we have chosen to ignore this issue, which can be fixed by a standard glueing process).
Example 2.4 (Reflected graphs). Take a reflection group W 𝑊 \displaystyle W italic_W acting on 𝒱 𝒱 \displaystyle\mathcal{V} caligraphic_V , and a mapping H : 𝒱 → ℂ p : 𝐻 → 𝒱 superscript ℂ 𝑝 \displaystyle H\colon\mathcal{V}\to\mathbb{C}^{p} italic_H : caligraphic_V → blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT . We may regard W 𝑊 \displaystyle W italic_W as a reflection group acting on 𝒱 × ℂ p 𝒱 superscript ℂ 𝑝 \displaystyle\mathcal{V}\times\mathbb{C}^{p} caligraphic_V × blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT , by extending the action trivially on ℂ p superscript ℂ 𝑝 \displaystyle\mathbb{C}^{p} blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT , and take 𝒴 ⊆ 𝒱 × ℂ p 𝒴 𝒱 superscript ℂ 𝑝 \displaystyle\mathcal{Y}\subseteq\mathcal{V}\times\mathbb{C}^{p} caligraphic_Y ⊆ caligraphic_V × blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT to be the graph of H 𝐻 \displaystyle H italic_H (or equivalently, take the graph embedding h : 𝒱 → 𝒱 × ℂ p : ℎ → 𝒱 𝒱 superscript ℂ 𝑝 \displaystyle h\colon\mathcal{V}\to\mathcal{V}\times\mathbb{C}^{p} italic_h : caligraphic_V → caligraphic_V × blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ) . The resulting reflection mapping 𝒱 → ℂ n × ℂ p → 𝒱 superscript ℂ 𝑛 superscript ℂ 𝑝 \displaystyle\mathcal{V}\to\mathbb{C}^{n}\times\mathbb{C}^{p} caligraphic_V → blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT × blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT is called a reflected graph and has the form
x ↦ ( ω ( x ) , H ( x ) ) . maps-to 𝑥 𝜔 𝑥 𝐻 𝑥 \displaystyle x\mapsto\big{(}\omega(x),H(x)\big{)}. italic_x ↦ ( italic_ω ( italic_x ) , italic_H ( italic_x ) ) .
A typical and much studied example of reflected graphs are folding maps
( x , y ) ↦ ( x , y 2 , H ( x , y ) ) , x ∈ ℂ n − 1 , y ∈ ℂ . formulae-sequence maps-to 𝑥 𝑦 𝑥 superscript 𝑦 2 𝐻 𝑥 𝑦 formulae-sequence 𝑥 superscript ℂ 𝑛 1 𝑦 ℂ \displaystyle(x,y)\mapsto(x,y^{2},H(x,y)),\quad x\in\mathbb{C}^{n-1},y\in%\mathbb{C}. ( italic_x , italic_y ) ↦ ( italic_x , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_H ( italic_x , italic_y ) ) , italic_x ∈ blackboard_C start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT , italic_y ∈ blackboard_C .
Observe that, after a target change of coordinates, H ( x , y ) 𝐻 𝑥 𝑦 \displaystyle H(x,y) italic_H ( italic_x , italic_y ) can be taken to be of the form y P ( x , y 2 ) 𝑦 𝑃 𝑥 superscript 𝑦 2 \displaystyle yP(x,y^{2}) italic_y italic_P ( italic_x , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) . Similarly, double folds are ℤ / 2 × ℤ / 2 ℤ 2 ℤ 2 \displaystyle\mathbb{Z}/2\times\mathbb{Z}/2 blackboard_Z / 2 × blackboard_Z / 2 -reflected graphs of the form ( x , y ) ↦ ( x 2 , y 2 , x P 1 ( x 2 , y 2 ) + y P 2 ( x 2 , y 2 ) + x y P 3 ( x 2 , y 2 ) ) maps-to 𝑥 𝑦 superscript 𝑥 2 superscript 𝑦 2 𝑥 subscript 𝑃 1 superscript 𝑥 2 superscript 𝑦 2 𝑦 subscript 𝑃 2 superscript 𝑥 2 superscript 𝑦 2 𝑥 𝑦 subscript 𝑃 3 superscript 𝑥 2 superscript 𝑦 2 \displaystyle(x,y)\mapsto(x^{2},y^{2},xP_{1}(x^{2},y^{2})+yP_{2}(x^{2},y^{2})+%xyP_{3}(x^{2},y^{2})) ( italic_x , italic_y ) ↦ ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_x italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + italic_y italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + italic_x italic_y italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ) and k 𝑘 \displaystyle k italic_k -folding mappings are ℤ / k ℤ 𝑘 \displaystyle\mathbb{Z}/k blackboard_Z / italic_k -reflected graphs ( x , y ) ↦ ( x , y k , H ( x , y ) ) maps-to 𝑥 𝑦 𝑥 superscript 𝑦 𝑘 𝐻 𝑥 𝑦 \displaystyle(x,y)\mapsto(x,y^{k},H(x,y)) ( italic_x , italic_y ) ↦ ( italic_x , italic_y start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT , italic_H ( italic_x , italic_y ) ) (See the Introduction for references for folding maps, double folds and k 𝑘 \displaystyle k italic_k -folding mappings).
An interesting example is the ℤ / k × ℤ / k ℤ 𝑘 ℤ 𝑘 \displaystyle\mathbb{Z}/k\times\mathbb{Z}/k blackboard_Z / italic_k × blackboard_Z / italic_k -reflection graph ( x , y ) ↦ ( x k , y k , x y ) maps-to 𝑥 𝑦 superscript 𝑥 𝑘 superscript 𝑦 𝑘 𝑥 𝑦 \displaystyle(x,y)\mapsto(x^{k},y^{k},xy) ( italic_x , italic_y ) ↦ ( italic_x start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT , italic_x italic_y ) , defined by the graph of the function H ( x , y ) = x y 𝐻 𝑥 𝑦 𝑥 𝑦 \displaystyle H(x,y)=xy italic_H ( italic_x , italic_y ) = italic_x italic_y . It parametrizes the A k − 1 subscript 𝐴 𝑘 1 \displaystyle A_{k-1} italic_A start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT -singularity { Z k = X Y } superscript 𝑍 𝑘 𝑋 𝑌 \displaystyle\{Z^{k}=XY\} { italic_Z start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT = italic_X italic_Y } , but it does so in a generically k 𝑘 \displaystyle k italic_k -to-one way, as explained in Example 2.9 (observe that A k − 1 subscript 𝐴 𝑘 1 \displaystyle A_{k-1} italic_A start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT being normal prevents it from being parametrized in a generically one-to-one way).
Also, taking the group D 8 subscript 𝐷 8 \displaystyle D_{8} italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT (Example 2.2 ) and the functions H 1 ( x , y ) = x + 2 y subscript 𝐻 1 𝑥 𝑦 𝑥 2 𝑦 \displaystyle H_{1}(x,y)=x+2y italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_y ) = italic_x + 2 italic_y and H 2 ( x , y ) = x 2 + x y − y 2 + x 3 + x 2 y − 2 x y 2 − y 3 subscript 𝐻 2 𝑥 𝑦 superscript 𝑥 2 𝑥 𝑦 superscript 𝑦 2 superscript 𝑥 3 superscript 𝑥 2 𝑦 2 𝑥 superscript 𝑦 2 superscript 𝑦 3 \displaystyle H_{2}(x,y)=x^{2}+xy-y^{2}+x^{3}+x^{2}y-2xy^{2}-y^{3} italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_y ) = italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_x italic_y - italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y - 2 italic_x italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_y start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , we obtain the reflection graphs
f 1 D 8 : ( x , y ) ↦ ( x 2 + y 2 , x 2 y 2 , x + 2 y ) , : subscript superscript 𝑓 subscript 𝐷 8 1 maps-to 𝑥 𝑦 superscript 𝑥 2 superscript 𝑦 2 superscript 𝑥 2 superscript 𝑦 2 𝑥 2 𝑦 \displaystyle f^{D_{8}}_{1}\colon(x,y)\mapsto(x^{2}+y^{2},x^{2}y^{2},x+2y), italic_f start_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT : ( italic_x , italic_y ) ↦ ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_x + 2 italic_y ) ,
f 2 D 8 : ( x , y ) ↦ ( x 2 + y 2 , x 2 y 2 , 2 x 2 + 3 x y − y 2 + 2 x 3 + 8 x 2 y − 2 x y 2 − 2 y 3 ) . : subscript superscript 𝑓 subscript 𝐷 8 2 maps-to 𝑥 𝑦 superscript 𝑥 2 superscript 𝑦 2 superscript 𝑥 2 superscript 𝑦 2 2 superscript 𝑥 2 3 𝑥 𝑦 superscript 𝑦 2 2 superscript 𝑥 3 8 superscript 𝑥 2 𝑦 2 𝑥 superscript 𝑦 2 2 superscript 𝑦 3 \displaystyle f^{D_{8}}_{2}\colon(x,y)\mapsto(x^{2}+y^{2},x^{2}y^{2},2x^{2}+3%xy-y^{2}+2x^{3}+8x^{2}y-2xy^{2}-2y^{3}). italic_f start_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT : ( italic_x , italic_y ) ↦ ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , 2 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_x italic_y - italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 8 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y - 2 italic_x italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 italic_y start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) .
The last two examples are depicted in Figure 1 .
Example 2.5 (Reflection mappings with unbounded multiplicity). The map-germs
f ( d 1 , d 2 , d 3 ) : ( x , y ) ↦ ( x d 1 , y d 2 , ( x + y ) d 3 ) , : superscript 𝑓 subscript 𝑑 1 subscript 𝑑 2 subscript 𝑑 3 maps-to 𝑥 𝑦 superscript 𝑥 subscript 𝑑 1 superscript 𝑦 subscript 𝑑 2 superscript 𝑥 𝑦 subscript 𝑑 3 \displaystyle f^{(d_{1},d_{2},d_{3})}\colon(x,y)\mapsto(x^{d_{1}},y^{d_{2}},(x%+y)^{d_{3}}), italic_f start_POSTSUPERSCRIPT ( italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_d start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT : ( italic_x , italic_y ) ↦ ( italic_x start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , ( italic_x + italic_y ) start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) ,
f ( d 1 , … , d 5 ) : ( x , y , z ) ↦ ( x d 1 , y d 2 , z d 3 , ( x + y + z ) d 4 , ( x − y + 2 z ) d 5 ) , : superscript 𝑓 subscript 𝑑 1 … subscript 𝑑 5 maps-to 𝑥 𝑦 𝑧 superscript 𝑥 subscript 𝑑 1 superscript 𝑦 subscript 𝑑 2 superscript 𝑧 subscript 𝑑 3 superscript 𝑥 𝑦 𝑧 subscript 𝑑 4 superscript 𝑥 𝑦 2 𝑧 subscript 𝑑 5 \displaystyle f^{(d_{1},\dots,d_{5})}\colon(x,y,z)\mapsto(x^{d_{1}},y^{d_{2}},%z^{d_{3}},(x+y+z)^{d_{4}},(x-y+2z)^{d_{5}}), italic_f start_POSTSUPERSCRIPT ( italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_d start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT : ( italic_x , italic_y , italic_z ) ↦ ( italic_x start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_z start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , ( italic_x + italic_y + italic_z ) start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , ( italic_x - italic_y + 2 italic_z ) start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) ,
with d i subscript 𝑑 𝑖 \displaystyle d_{i} italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT pairwise coprime positive integers, belong to a family of map-germs ( ℂ n , 0 ) → ( ℂ 2 n − 1 , 0 ) → superscript ℂ 𝑛 0 superscript ℂ 2 𝑛 1 0 \displaystyle(\mathbb{C}^{n},0)\to(\mathbb{C}^{2n-1},0) ( blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , 0 ) → ( blackboard_C start_POSTSUPERSCRIPT 2 italic_n - 1 end_POSTSUPERSCRIPT , 0 ) , introduced in [17 , Theorems 9.5 and 9.6] ), which, to this day, are the only known family of 𝒜 𝒜 \displaystyle\mathcal{A} caligraphic_A -finite map-germs whose coordinate functions have unbounded order. These are the germs studied by Brasselet, Ruas, Silva and Thuy mentioned in the Introduction.
Unfoldings and W 𝑊 \displaystyle W italic_W -unfoldings In the theory of singularities of mappings, the notion of deformation of a space-germ is replaced by that of unfolding of a map-germ. An unfolding of a map-germ f : ( 𝒴 , S ) → ( 𝒵 , z ) : 𝑓 → 𝒴 𝑆 𝒵 𝑧 \displaystyle f\colon(\mathcal{Y},S)\to(\mathcal{Z},z) italic_f : ( caligraphic_Y , italic_S ) → ( caligraphic_Z , italic_z ) is a map-germ
F : ( 𝒴 , S ) × ( ℂ r , 0 ) → ( 𝒵 , z ) × ( ℂ r , 0 ) : 𝐹 → 𝒴 𝑆 superscript ℂ 𝑟 0 𝒵 𝑧 superscript ℂ 𝑟 0 \displaystyle F\colon(\mathcal{Y},S)\times(\mathbb{C}^{r},0)\to(\mathcal{Z},z)%\times(\mathbb{C}^{r},0) italic_F : ( caligraphic_Y , italic_S ) × ( blackboard_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT , 0 ) → ( caligraphic_Z , italic_z ) × ( blackboard_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT , 0 )
of the form F ( x , t ) = ( f t ( x ) , t ) 𝐹 𝑥 𝑡 subscript 𝑓 𝑡 𝑥 𝑡 \displaystyle F(x,t)=(f_{t}(x),t) italic_F ( italic_x , italic_t ) = ( italic_f start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_x ) , italic_t ) , satisfying f 0 = f subscript 𝑓 0 𝑓 \displaystyle f_{0}=f italic_f start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_f . Fixed a small representative of F 𝐹 \displaystyle F italic_F and a value ϵ italic-ϵ \displaystyle\epsilon italic_ϵ of the parameter t 𝑡 \displaystyle t italic_t , the map f ϵ subscript 𝑓 italic-ϵ \displaystyle f_{\epsilon} italic_f start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT is called a perturbation of f 𝑓 \displaystyle f italic_f .
A reflection mapping may be perturbed into a non reflection mapping, for example, by perturbing ω 𝜔 \displaystyle\omega italic_ω in a way unrelated to the action of the group W 𝑊 \displaystyle W italic_W . At the same time, perturbing 𝒴 𝒴 \displaystyle\mathcal{Y} caligraphic_Y while keeping ω 𝜔 \displaystyle\omega italic_ω intact gives a family of reflection mappings containing the original reflection mapping defined by 𝒴 𝒴 \displaystyle\mathcal{Y} caligraphic_Y . If we want to study unfoldings of reflection mappings without leaving the reflection mapping seting, these are the deformations we want to consider. In the following lines we formalize this construction.
Let f : 𝒴 → ℂ p : 𝑓 → 𝒴 superscript ℂ 𝑝 \displaystyle f\colon\mathcal{Y}\to\mathbb{C}^{p} italic_f : caligraphic_Y → blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT be a reflection mapping, and consider a complex submanifold 𝒴 ~ ⊆ 𝒱 × Δ ~ 𝒴 𝒱 Δ \displaystyle\widetilde{\mathcal{Y}}\subseteq\mathcal{V}\times\Delta over~ start_ARG caligraphic_Y end_ARG ⊆ caligraphic_V × roman_Δ , such that 𝒴 ~ → Δ → ~ 𝒴 Δ \displaystyle\widetilde{\mathcal{Y}}\to\Delta over~ start_ARG caligraphic_Y end_ARG → roman_Δ defines a trivial deformation of 𝒴 𝒴 \displaystyle\mathcal{Y} caligraphic_Y over an open subset Δ ⊆ ℂ r Δ superscript ℂ 𝑟 \displaystyle\Delta\subseteq\mathbb{C}^{r} roman_Δ ⊆ blackboard_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT containing the origin. We may extend the action of W 𝑊 \displaystyle W italic_W to 𝒱 × ℂ r 𝒱 superscript ℂ 𝑟 \displaystyle\mathcal{V}\times\mathbb{C}^{r} caligraphic_V × blackboard_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT , trivially on the ℂ r superscript ℂ 𝑟 \displaystyle\mathbb{C}^{r} blackboard_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT coordinates, so that the corresponding orbit mapping is ω ~ = ω × id ℂ r ~ 𝜔 𝜔 subscript id superscript ℂ 𝑟 \displaystyle\widetilde{\omega}=\omega\times\operatorname{id}_{\mathbb{C}^{r}} over~ start_ARG italic_ω end_ARG = italic_ω × roman_id start_POSTSUBSCRIPT blackboard_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT end_POSTSUBSCRIPT .
Definition 2.6 . In the above setting, the reflection mapping
F = ω ~ | 𝒴 ~ : 𝒴 ~ → ℂ p × Δ \displaystyle F=\widetilde{\omega}_{|_{\widetilde{\mathcal{Y}}}}\colon%\widetilde{\mathcal{Y}}\to\mathbb{C}^{p}\times\Delta italic_F = over~ start_ARG italic_ω end_ARG start_POSTSUBSCRIPT | start_POSTSUBSCRIPT over~ start_ARG caligraphic_Y end_ARG end_POSTSUBSCRIPT end_POSTSUBSCRIPT : over~ start_ARG caligraphic_Y end_ARG → blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT × roman_Δ
is called a W 𝑊 \displaystyle W italic_W -unfolding of f 𝑓 \displaystyle f italic_f . If f : ( 𝒴 , S ) → ( 𝒵 , z ) : 𝑓 → 𝒴 𝑆 𝒵 𝑧 \displaystyle f\colon(\mathcal{Y},S)\to(\mathcal{Z},z) italic_f : ( caligraphic_Y , italic_S ) → ( caligraphic_Z , italic_z ) is a germ of reflection mapping, a W 𝑊 \displaystyle W italic_W -unfolding of f 𝑓 \displaystyle f italic_f is the germ at S × { 0 } 𝑆 0 \displaystyle S\times\{0\} italic_S × { 0 } of a W 𝑊 \displaystyle W italic_W -unfolding of a representative.
Observe that the triviality condition on the deformation 𝒴 ~ → ℂ r → ~ 𝒴 superscript ℂ 𝑟 \displaystyle\widetilde{\mathcal{Y}}\to\mathbb{C}^{r} over~ start_ARG caligraphic_Y end_ARG → blackboard_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ensures that ( 𝒴 ~ , S × { 0 } ) ~ 𝒴 𝑆 0 \displaystyle(\widetilde{\mathcal{Y}},S\times\{0\}) ( over~ start_ARG caligraphic_Y end_ARG , italic_S × { 0 } ) and ( 𝒴 , S ) × ( Δ , 0 ) 𝒴 𝑆 Δ 0 \displaystyle(\mathcal{Y},S)\times(\Delta,0) ( caligraphic_Y , italic_S ) × ( roman_Δ , 0 ) are isomorphic. In particular, every W 𝑊 \displaystyle W italic_W -unfolding of a germ f 𝑓 \displaystyle f italic_f is, up to 𝒜 𝒜 \displaystyle\mathcal{A} caligraphic_A -equivalence, an unfolding of f 𝑓 \displaystyle f italic_f .
Example 2.7 (A family of tetrahedral reflection mappings). Let 𝔖 4 subscript 𝔖 4 \displaystyle\mathfrak{S}_{4} fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT be the group of symmetries of a tetrahedron, as in Example 2.3 . Considerthe family of reflection mappings
f t 𝔖 4 = ω | 𝒴 t : 𝒴 t → ℂ 3 with 𝒴 t = { u = t ( 2 v + w ) } . : superscript subscript 𝑓 𝑡 subscript 𝔖 4 evaluated-at 𝜔 subscript 𝒴 𝑡 formulae-sequence → subscript 𝒴 𝑡 superscript ℂ 3 with
subscript 𝒴 𝑡 𝑢 𝑡 2 𝑣 𝑤 \displaystyle f_{t}^{\mathfrak{S}_{4}}=\omega|_{\mathcal{Y}_{t}}\colon\mathcal%{Y}_{t}\to\mathbb{C}^{3}\quad\text{with}\quad\mathcal{Y}_{t}=\{u=t(2v+w)\}. italic_f start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = italic_ω | start_POSTSUBSCRIPT caligraphic_Y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_POSTSUBSCRIPT : caligraphic_Y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT → blackboard_C start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT with caligraphic_Y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = { italic_u = italic_t ( 2 italic_v + italic_w ) } .
Equivalently, we may parametrize 𝒴 t subscript 𝒴 𝑡 \displaystyle\mathcal{Y}_{t} caligraphic_Y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT by ( x , y ) ↦ ( t ( 2 x + y ) , x , y ) maps-to 𝑥 𝑦 𝑡 2 𝑥 𝑦 𝑥 𝑦 \displaystyle(x,y)\mapsto(t(2x+y),x,y) ( italic_x , italic_y ) ↦ ( italic_t ( 2 italic_x + italic_y ) , italic_x , italic_y ) and think of f t 𝔖 4 superscript subscript 𝑓 𝑡 subscript 𝔖 4 \displaystyle f_{t}^{\mathfrak{S}_{4}} italic_f start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT as mappings ℂ 2 → ℂ 3 → superscript ℂ 2 superscript ℂ 3 \displaystyle\mathbb{C}^{2}\to\mathbb{C}^{3} blackboard_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_C start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT of the form
( x , y ) ↦ ( t 2 ( 2 x + y ) 2 + x 2 + y 2 , ( t 2 ( 2 x + y ) 2 − x 2 ) y , ( 2 t 2 ( 2 x + y ) 2 − y 2 ) ( 2 x 2 − y 2 ) ) maps-to 𝑥 𝑦 superscript 𝑡 2 superscript 2 𝑥 𝑦 2 superscript 𝑥 2 superscript 𝑦 2 superscript 𝑡 2 superscript 2 𝑥 𝑦 2 superscript 𝑥 2 𝑦 2 superscript 𝑡 2 superscript 2 𝑥 𝑦 2 superscript 𝑦 2 2 superscript 𝑥 2 superscript 𝑦 2 \displaystyle\big{(}x,y\big{)}\mapsto\Big{(}t^{2}(2x+y)^{2}+x^{2}+y^{2},\big{(%}t^{2}(2x+y)^{2}-x^{2}\big{)}y,\big{(}2t^{2}(2x+y)^{2}-y^{2}\big{)}\big{(}2x^{%2}-y^{2}\big{)}\Big{)} ( italic_x , italic_y ) ↦ ( italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 2 italic_x + italic_y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , ( italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 2 italic_x + italic_y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_y , ( 2 italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 2 italic_x + italic_y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( 2 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) )
As it turns out, 𝒴 0 = { u = 0 } = Fix ( 1 2 ) subscript 𝒴 0 𝑢 0 Fix 12 \displaystyle\mathcal{Y}_{0}=\{u=0\}=\operatorname{Fix}(1\;2) caligraphic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = { italic_u = 0 } = roman_Fix ( 1 2 ) is one of the reflecting hyperplanes of 𝔖 4 subscript 𝔖 4 \displaystyle\mathfrak{S}_{4} fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT . Since 𝔖 4 subscript 𝔖 4 \displaystyle\mathfrak{S}_{4} fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT acts transitively on its reflecting hyperplanes, we have that W 𝒴 0 = 𝒜 𝑊 subscript 𝒴 0 𝒜 \displaystyle W\mathcal{Y}_{0}=\mathscr{A} italic_W caligraphic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = script_A , thus
Im f 0 𝔖 4 = ω ( 𝒴 0 ) = ω ( 𝒜 ) , Im superscript subscript 𝑓 0 subscript 𝔖 4 𝜔 subscript 𝒴 0 𝜔 𝒜 \displaystyle\operatorname{Im}f_{0}^{\mathfrak{S}_{4}}=\omega(\mathcal{Y}_{0})%=\omega(\mathscr{A}), roman_Im italic_f start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = italic_ω ( caligraphic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_ω ( script_A ) ,
which means that the image of f 0 𝔖 4 superscript subscript 𝑓 0 subscript 𝔖 4 \displaystyle f_{0}^{\mathfrak{S}_{4}} italic_f start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT is precisely the discriminant of the orbit map ω 𝜔 \displaystyle\omega italic_ω .
The degree of a reflection mapping Before turning our attention to the image and double points space, we show how the degree of a reflection map is encoded by the stabilizers of 𝒴 𝒴 \displaystyle\mathcal{Y} caligraphic_Y in a very simple way. This is essential to our study of the image in the hypersurface case, but it applies to all dimensions.
In this work, when we talk about degree of a mapping f : 𝒴 → 𝒵 : 𝑓 → 𝒴 𝒵 \displaystyle f\colon\mathcal{Y}\to\mathcal{Z} italic_f : caligraphic_Y → caligraphic_Z , we mean the number of preimages of a generic point in f ( 𝒴 ) 𝑓 𝒴 \displaystyle f(\mathcal{Y}) italic_f ( caligraphic_Y ) . For this to make sense, there must be an open dense subset of f ( 𝒴 ) 𝑓 𝒴 \displaystyle f(\mathcal{Y}) italic_f ( caligraphic_Y ) on which this number of preimages is contant. This happens if f ( 𝒴 ) 𝑓 𝒴 \displaystyle f(\mathcal{Y}) italic_f ( caligraphic_Y ) is irreducible and f : 𝒴 → f ( 𝒴 ) : 𝑓 → 𝒴 𝑓 𝒴 \displaystyle f\colon\mathcal{Y}\to f(\mathcal{Y}) italic_f : caligraphic_Y → italic_f ( caligraphic_Y ) is proper. The degree for finite map-germs is defined by taking a proper representative. For mappings where f ( 𝒴 ) 𝑓 𝒴 \displaystyle f(\mathcal{Y}) italic_f ( caligraphic_Y ) fails to be irreducible, a different degree is associated to f 𝑓 \displaystyle f italic_f on each irreducible component of f ( 𝒴 ) 𝑓 𝒴 \displaystyle f(\mathcal{Y}) italic_f ( caligraphic_Y ) .
Proposition 2.8 . Let f 𝑓 \displaystyle f italic_f be a reflection mapping such that f : 𝒴 → f ( 𝒴 ) : 𝑓 → 𝒴 𝑓 𝒴 \displaystyle f\colon\mathcal{Y}\to f(\mathcal{Y}) italic_f : caligraphic_Y → italic_f ( caligraphic_Y ) is proper and f ( 𝒴 ) 𝑓 𝒴 \displaystyle f(\mathcal{Y}) italic_f ( caligraphic_Y ) is irreducible. The degree of f 𝑓 \displaystyle f italic_f is | W 𝒴 : W 𝒴 | \displaystyle|W^{\mathcal{Y}}:W_{\mathcal{Y}}| | italic_W start_POSTSUPERSCRIPT caligraphic_Y end_POSTSUPERSCRIPT : italic_W start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT | .
Proof. The degree of f 𝑓 \displaystyle f italic_f is the number of preimages of a generic point in ω ( 𝒴 ) 𝜔 𝒴 \displaystyle\omega(\mathcal{Y}) italic_ω ( caligraphic_Y ) , that is, the number of points in W u ∩ 𝒴 𝑊 𝑢 𝒴 \displaystyle Wu\cap\mathcal{Y} italic_W italic_u ∩ caligraphic_Y , for u 𝑢 \displaystyle u italic_u in a certain open dense subset 𝒰 1 ⊆ 𝒴 subscript 𝒰 1 𝒴 \displaystyle\mathcal{U}_{1}\subseteq\mathcal{Y} caligraphic_U start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ⊆ caligraphic_Y . Observe that, given σ ∈ W 𝜎 𝑊 \displaystyle\sigma\in W italic_σ ∈ italic_W and u ∈ 𝒴 𝑢 𝒴 \displaystyle u\in\mathcal{Y} italic_u ∈ caligraphic_Y , the condition σ u ∈ 𝒴 𝜎 𝑢 𝒴 \displaystyle\sigma u\in\mathcal{Y} italic_σ italic_u ∈ caligraphic_Y may hold even if σ 𝜎 \displaystyle\sigma italic_σ does not fix the set 𝒴 𝒴 \displaystyle\mathcal{Y} caligraphic_Y , that is, even if σ ∉ 𝒲 𝒴 𝜎 superscript 𝒲 𝒴 \displaystyle\sigma\notin\mathcal{W}^{\mathcal{Y}} italic_σ ∉ caligraphic_W start_POSTSUPERSCRIPT caligraphic_Y end_POSTSUPERSCRIPT . But, by definition of 𝒲 𝒴 superscript 𝒲 𝒴 \displaystyle\mathcal{W}^{\mathcal{Y}} caligraphic_W start_POSTSUPERSCRIPT caligraphic_Y end_POSTSUPERSCRIPT , this must happen only on a proper closed subset of 𝒴 𝒴 \displaystyle\mathcal{Y} caligraphic_Y . Hence, there is an open dense subset 𝒰 2 ⊆ 𝒴 subscript 𝒰 2 𝒴 \displaystyle\mathcal{U}_{2}\subseteq\mathcal{Y} caligraphic_U start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⊆ caligraphic_Y such that the orbit of u ∈ 𝒰 2 𝑢 subscript 𝒰 2 \displaystyle u\in\mathcal{U}_{2} italic_u ∈ caligraphic_U start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT by the action of W 𝒴 / W 𝒴 superscript 𝑊 𝒴 subscript 𝑊 𝒴 \displaystyle W^{\mathcal{Y}}/W_{\mathcal{Y}} italic_W start_POSTSUPERSCRIPT caligraphic_Y end_POSTSUPERSCRIPT / italic_W start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT is W u ∩ 𝒴 𝑊 𝑢 𝒴 \displaystyle Wu\cap\mathcal{Y} italic_W italic_u ∩ caligraphic_Y . Since W 𝒴 / W 𝒴 superscript 𝑊 𝒴 subscript 𝑊 𝒴 \displaystyle W^{\mathcal{Y}}/W_{\mathcal{Y}} italic_W start_POSTSUPERSCRIPT caligraphic_Y end_POSTSUPERSCRIPT / italic_W start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT acts faithfully on 𝒴 𝒴 \displaystyle\mathcal{Y} caligraphic_Y , there is an open dense subset 𝒰 3 subscript 𝒰 3 \displaystyle\mathcal{U}_{3} caligraphic_U start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT , such that the orbit of a point u ∈ 𝒰 3 𝑢 subscript 𝒰 3 \displaystyle u\in\mathcal{U}_{3} italic_u ∈ caligraphic_U start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT consists of | W 𝒴 : W 𝒴 | \displaystyle|W^{\mathcal{Y}}:W_{\mathcal{Y}}| | italic_W start_POSTSUPERSCRIPT caligraphic_Y end_POSTSUPERSCRIPT : italic_W start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT | points. Since 𝒰 1 ∩ 𝒰 2 ∩ 𝒰 3 ≠ ∅ subscript 𝒰 1 subscript 𝒰 2 subscript 𝒰 3 \displaystyle\mathcal{U}_{1}\cap\mathcal{U}_{2}\cap\mathcal{U}_{3}\neq\emptyset caligraphic_U start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∩ caligraphic_U start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∩ caligraphic_U start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ≠ ∅ , the claim follows.∎
Example 2.9 . Consider the mapping f ( x , y ) = ( x k , y k , x y ) 𝑓 𝑥 𝑦 superscript 𝑥 𝑘 superscript 𝑦 𝑘 𝑥 𝑦 \displaystyle f(x,y)=(x^{k},y^{k},xy) italic_f ( italic_x , italic_y ) = ( italic_x start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT , italic_x italic_y ) of Example 2.4 . One sees that the subgroup of ℤ / k × ℤ / k ℤ 𝑘 ℤ 𝑘 \displaystyle\mathbb{Z}/k\times\mathbb{Z}/k blackboard_Z / italic_k × blackboard_Z / italic_k preserving 𝒴 = { u 3 = u 1 u 2 } 𝒴 subscript 𝑢 3 subscript 𝑢 1 subscript 𝑢 2 \displaystyle\mathcal{Y}=\{u_{3}=u_{1}u_{2}\} caligraphic_Y = { italic_u start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT } is
( ℤ / k × ℤ / k ) 𝒴 = ⟨ ( 1 , − 1 ) ⟩ ≅ ℤ / k , superscript ℤ 𝑘 ℤ 𝑘 𝒴 delimited-⟨⟩ 1 1 ℤ 𝑘 \displaystyle(\mathbb{Z}/k\times\mathbb{Z}/k)^{\mathcal{Y}}=\langle(1,-1)%\rangle\cong\mathbb{Z}/k, ( blackboard_Z / italic_k × blackboard_Z / italic_k ) start_POSTSUPERSCRIPT caligraphic_Y end_POSTSUPERSCRIPT = ⟨ ( 1 , - 1 ) ⟩ ≅ blackboard_Z / italic_k ,
while no non trivial element of ℤ / k × ℤ / k ℤ 𝑘 ℤ 𝑘 \displaystyle\mathbb{Z}/k\times\mathbb{Z}/k blackboard_Z / italic_k × blackboard_Z / italic_k preserves 𝒴 𝒴 \displaystyle\mathcal{Y} caligraphic_Y pointwise. Therefore, the mapping f 𝑓 \displaystyle f italic_f is generically k 𝑘 \displaystyle k italic_k -to-one. The mapping f 0 𝔖 4 superscript subscript 𝑓 0 subscript 𝔖 4 \displaystyle f_{0}^{\mathfrak{S}_{4}} italic_f start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT of Example 2.7 has
𝔖 4 𝒴 0 = ⟨ ( 1 2 ) , ( 3 4 ) ⟩ ≅ ℤ / 2 × ℤ / 2 𝔖 4 𝒴 0 = ⟨ ( 1 2 ) ⟩ ≅ ℤ / 2 . formulae-sequence superscript subscript 𝔖 4 subscript 𝒴 0 12 34
ℤ 2 ℤ 2 subscript subscript 𝔖 4 subscript 𝒴 0
delimited-⟨⟩ 12 ℤ 2 \displaystyle{\mathfrak{S}_{4}}^{\mathcal{Y}_{0}}=\langle(1\,2),(3\,4)\rangle%\cong\mathbb{Z}/2\times\mathbb{Z}/2\quad\text{}\quad{\mathfrak{S}_{4}}_{%\mathcal{Y}_{0}}=\langle(1\,2)\rangle\cong\mathbb{Z}/2. fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT caligraphic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = ⟨ ( 1 2 ) , ( 3 4 ) ⟩ ≅ blackboard_Z / 2 × blackboard_Z / 2 fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUBSCRIPT caligraphic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = ⟨ ( 1 2 ) ⟩ ≅ blackboard_Z / 2 .
Therefore, f 0 𝔖 4 superscript subscript 𝑓 0 subscript 𝔖 4 \displaystyle f_{0}^{\mathfrak{S}_{4}} italic_f start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT parametrizes the discriminant of ω 𝜔 \displaystyle\omega italic_ω in a two-to-one way.
Corollary 2.10 . Let f 𝑓 \displaystyle f italic_f be a reflection mapping such that f : 𝒴 → f ( 𝒴 ) : 𝑓 → 𝒴 𝑓 𝒴 \displaystyle f\colon\mathcal{Y}\to f(\mathcal{Y}) italic_f : caligraphic_Y → italic_f ( caligraphic_Y ) is proper. Then, f 𝑓 \displaystyle f italic_f is generically one-to-one if and only if, for all σ ∈ W ∖ { 1 } 𝜎 𝑊 1 \displaystyle\sigma\in W\setminus\{1\} italic_σ ∈ italic_W ∖ { 1 } , dim ( ( 𝒴 ∩ σ 𝒴 ) ∖ Fix σ ) ≤ n − 1 dim 𝒴 𝜎 𝒴 Fix 𝜎 𝑛 1 \displaystyle\operatorname{dim}((\mathcal{Y}\cap\sigma\mathcal{Y})\setminus%\operatorname{Fix}\sigma)\leq n-1 roman_dim ( ( caligraphic_Y ∩ italic_σ caligraphic_Y ) ∖ roman_Fix italic_σ ) ≤ italic_n - 1 .
Proof. We may assume ω ( 𝒴 ) 𝜔 𝒴 \displaystyle\omega(\mathcal{Y}) italic_ω ( caligraphic_Y ) to be irreducible, for neither the generically one-to-one property nor the condition dim ( ( 𝒴 ∩ σ 𝒴 ) ∖ Fix σ ) ≤ n − 1 dim 𝒴 𝜎 𝒴 Fix 𝜎 𝑛 1 \displaystyle\operatorname{dim}((\mathcal{Y}\cap\sigma\mathcal{Y})\setminus%\operatorname{Fix}\sigma)\leq n-1 roman_dim ( ( caligraphic_Y ∩ italic_σ caligraphic_Y ) ∖ roman_Fix italic_σ ) ≤ italic_n - 1 will be affected if we consider the irreducible components of ω ( 𝒴 ) 𝜔 𝒴 \displaystyle\omega(\mathcal{Y}) italic_ω ( caligraphic_Y ) separately. The condition dim ( ( 𝒴 ∩ σ 𝒴 ) ∖ Fix σ ) ≤ n − 1 dim 𝒴 𝜎 𝒴 Fix 𝜎 𝑛 1 \displaystyle\operatorname{dim}((\mathcal{Y}\cap\sigma\mathcal{Y})\setminus%\operatorname{Fix}\sigma)\leq n-1 roman_dim ( ( caligraphic_Y ∩ italic_σ caligraphic_Y ) ∖ roman_Fix italic_σ ) ≤ italic_n - 1 is equivalent to the statement that any σ ∈ W 𝜎 𝑊 \displaystyle\sigma\in W italic_σ ∈ italic_W must satisfy either 𝒴 ≠ σ 𝒴 𝒴 𝜎 𝒴 \displaystyle\mathcal{Y}\neq\sigma\mathcal{Y} caligraphic_Y ≠ italic_σ caligraphic_Y or 𝒴 ⊆ Fix σ 𝒴 Fix 𝜎 \displaystyle\mathcal{Y}\subseteq\operatorname{Fix}\sigma caligraphic_Y ⊆ roman_Fix italic_σ , that is, that any σ ∈ W 𝒴 𝜎 superscript 𝑊 𝒴 \displaystyle\sigma\in W^{\mathcal{Y}} italic_σ ∈ italic_W start_POSTSUPERSCRIPT caligraphic_Y end_POSTSUPERSCRIPT must be contained in W 𝒴 subscript 𝑊 𝒴 \displaystyle W_{\mathcal{Y}} italic_W start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT .∎
In order to prove our formulas for Im f Im 𝑓 \displaystyle\operatorname{Im}f roman_Im italic_f , we need the next result. Since the proof is slightly involved and the statement is quite clear, we postpone the proof until Appendix A .
Lemma 2.11 (Generically One-To-One Unfolding). Any multi-germ of reflection mapping admits a one-parameter W 𝑊 \displaystyle W italic_W -unfolding, given by 𝒴 ~ ⊆ 𝒱 × ℂ ~ 𝒴 𝒱 ℂ \displaystyle\widetilde{\mathcal{Y}}\subseteq\mathcal{V}\times\mathbb{C} over~ start_ARG caligraphic_Y end_ARG ⊆ caligraphic_V × blackboard_C , such that dim ( 𝒴 ~ ∩ σ 𝒴 ~ ) < dim 𝒴 ~ dim ~ 𝒴 𝜎 ~ 𝒴 dim ~ 𝒴 \displaystyle\operatorname{dim}(\widetilde{\mathcal{Y}}\cap\sigma\widetilde{%\mathcal{Y}})<\operatorname{dim}\widetilde{\mathcal{Y}} roman_dim ( over~ start_ARG caligraphic_Y end_ARG ∩ italic_σ over~ start_ARG caligraphic_Y end_ARG ) < roman_dim over~ start_ARG caligraphic_Y end_ARG , for all σ ∈ W ∖ { 1 } 𝜎 𝑊 1 \displaystyle\sigma\in W\setminus\{1\} italic_σ ∈ italic_W ∖ { 1 } .In particular, this unfolding is generically one-to-one.
Fitting ideals It is well known that the image of a finite holomorphic mapping is an analytic set (indeed it is enough for the mapping to be proper). However, given an unfolding F = ( f t , t ) 𝐹 subscript 𝑓 𝑡 𝑡 \displaystyle F=(f_{t},t) italic_F = ( italic_f start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_t ) , the ideal of the image of f 0 subscript 𝑓 0 \displaystyle f_{0} italic_f start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT need not be the same as the result of computing the ideal of the image of F 𝐹 \displaystyle F italic_F and replacing t = 0 𝑡 0 \displaystyle t=0 italic_t = 0 . This is a problem for the study of singular mappings, where deformations are regarded as an essential part of the theory. Luckily enough, there is a solution consisting on declaring the image of a finite mapping f : 𝒴 → 𝒵 : 𝑓 → 𝒴 𝒵 \displaystyle f\colon\mathcal{Y}\to\mathcal{Z} italic_f : caligraphic_Y → caligraphic_Z to be, rather than just a set, a complex space
Im f = V ( ℱ 0 ( f ∗ 𝒪 𝒴 ) ) , Im 𝑓 𝑉 subscript ℱ 0 subscript 𝑓 subscript 𝒪 𝒴 \displaystyle\operatorname{Im}f=V(\mathcal{F}_{0}(f_{*}\mathcal{O}_{\mathcal{Y%}})), roman_Im italic_f = italic_V ( caligraphic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) ) ,
where ℱ 0 ( f ∗ 𝒪 𝒴 ) subscript ℱ 0 subscript 𝑓 subscript 𝒪 𝒴 \displaystyle\mathcal{F}_{0}(f_{*}\mathcal{O}_{\mathcal{Y}}) caligraphic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) stands for the 0 0 \displaystyle 0 th Fitting ideal sheaf of the pushforward module. This sometimes gives Im f Im 𝑓 \displaystyle\operatorname{Im}f roman_Im italic_f a non-reduced analytic structure, but this is the price we pay in order for the analytic structure to behave well under deformations. For map-germs, one uses the 0 0 \displaystyle 0 th Fitting ideal, written F 0 ( f ∗ 𝒪 𝒴 ) subscript 𝐹 0 subscript 𝑓 subscript 𝒪 𝒴 \displaystyle F_{0}(f_{*}\mathcal{O}_{\mathcal{Y}}) italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) . For information about Fitting ideals, we refer to [11 ] . We only include here the results we need.
Proposition 2.12 . If F = ( f t , t ) : 𝒴 × Δ → 𝒵 × Δ : 𝐹 subscript 𝑓 𝑡 𝑡 → 𝒴 Δ 𝒵 Δ \displaystyle F=(f_{t},t)\colon\mathcal{Y}\times\Delta\to\mathcal{Z}\times\Delta italic_F = ( italic_f start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_t ) : caligraphic_Y × roman_Δ → caligraphic_Z × roman_Δ is a finite mapping and ϵ ∈ Δ italic-ϵ Δ \displaystyle\epsilon\in\Delta italic_ϵ ∈ roman_Δ then V ( ℱ 0 ( f ϵ ∗ 𝒪 𝒴 ) ) = V ( ℱ 0 ( F ∗ 𝒪 𝒴 ) ) ∩ { t = ϵ } 𝑉 subscript ℱ 0 subscript 𝑓 italic-ϵ
subscript 𝒪 𝒴 𝑉 subscript ℱ 0 subscript 𝐹 subscript 𝒪 𝒴 𝑡 italic-ϵ \displaystyle V(\mathcal{F}_{0}(f_{\epsilon*}\mathcal{O}_{\mathcal{Y}}))=V(%\mathcal{F}_{0}(F_{*}\mathcal{O}_{\mathcal{Y}}))\cap\{t=\epsilon\} italic_V ( caligraphic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT italic_ϵ ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) ) = italic_V ( caligraphic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_F start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) ) ∩ { italic_t = italic_ϵ } .
Proposition 2.13 . Let f : X → ℂ n + 1 : 𝑓 → 𝑋 superscript ℂ 𝑛 1 \displaystyle f\colon X\to\mathbb{C}^{n+1} italic_f : italic_X → blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT be a finite mapping defined on a reduced n 𝑛 \displaystyle n italic_n -dimensional Cohen-Macaulay space, and assume the irreducible decomposition of X 𝑋 \displaystyle X italic_X to be X 1 , … , X m subscript 𝑋 1 … subscript 𝑋 𝑚
\displaystyle X_{1},\dots,X_{m} italic_X start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_X start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT . Let g i subscript 𝑔 𝑖 \displaystyle g_{i} italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT be a generator of the ideal of f ( X i ) 𝑓 subscript 𝑋 𝑖 \displaystyle f(X_{i}) italic_f ( italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) in ℂ n + 1 superscript ℂ 𝑛 1 \displaystyle\mathbb{C}^{n+1} blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT , and let d i subscript 𝑑 𝑖 \displaystyle d_{i} italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT be the degree of f 𝑓 \displaystyle f italic_f restricted to X i subscript 𝑋 𝑖 \displaystyle X_{i} italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT . Then F 0 ( f ∗ 𝒪 X ) subscript 𝐹 0 subscript 𝑓 subscript 𝒪 𝑋 \displaystyle F_{0}(f_{*}\mathcal{O}_{X}) italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) is a principal ideal, generated by
g = ∏ i = 1 m g i d i . 𝑔 superscript subscript product 𝑖 1 𝑚 superscript subscript 𝑔 𝑖 subscript 𝑑 𝑖 \displaystyle g=\prod_{i=1}^{m}g_{i}^{d_{i}}. italic_g = ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT .
The first result follows from [11 , Lemma 1.2] , the second is [11 , Proposition 3.2] . The next one is a slight modification, tailored to our needs:
Proposition 2.14 . Let f : X → ℂ n + 1 : 𝑓 → 𝑋 superscript ℂ 𝑛 1 \displaystyle f\colon X\to\mathbb{C}^{n+1} italic_f : italic_X → blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT be a finite map-germ defined on an n 𝑛 \displaystyle n italic_n -dimensional Cohen-Macaulay space. Let X 1 , … , X r subscript 𝑋 1 … subscript 𝑋 𝑟
\displaystyle X_{1},\dots,X_{r} italic_X start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_X start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT be n 𝑛 \displaystyle n italic_n -dimensional Cohen-Macaulay complex spaces, forming a set theoretical decomposition X = ∪ i = 1 r X i 𝑋 superscript subscript 𝑖 1 𝑟 subscript 𝑋 𝑖 \displaystyle X=\cup_{i=1}^{r}X_{i} italic_X = ∪ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ,where X i subscript 𝑋 𝑖 \displaystyle X_{i} italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and X j subscript 𝑋 𝑗 \displaystyle X_{j} italic_X start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT have no common components if i ≠ j 𝑖 𝑗 \displaystyle i\neq j italic_i ≠ italic_j .Assume each X i subscript 𝑋 𝑖 \displaystyle X_{i} italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT to be isomorphic to X 𝑋 \displaystyle X italic_X on an open dense subset of X i subscript 𝑋 𝑖 \displaystyle X_{i} italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT . Then,
F 0 ( f ∗ 𝒪 X ) = ∏ i = 1 r F 0 ( ( f | X i ) ∗ 𝒪 X i ) . subscript 𝐹 0 subscript 𝑓 subscript 𝒪 𝑋 superscript subscript product 𝑖 1 𝑟 subscript 𝐹 0 subscript evaluated-at 𝑓 subscript 𝑋 𝑖 subscript 𝒪 subscript 𝑋 𝑖 \displaystyle F_{0}(f_{*}\mathcal{O}_{X})=\prod_{i=1}^{r}F_{0}((f|_{X_{i}})_{*%}\mathcal{O}_{X_{i}}). italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) = ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( ( italic_f | start_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) .
Proof. Let X ~ ~ 𝑋 \displaystyle\tilde{X} over~ start_ARG italic_X end_ARG be the disjoint union of the spaces X i subscript 𝑋 𝑖 \displaystyle X_{i} italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and take the obvious mapping f ~ : X ~ → ℂ n + 1 : ~ 𝑓 → ~ 𝑋 superscript ℂ 𝑛 1 \displaystyle\tilde{f}\colon\tilde{X}\to\mathbb{C}^{n+1} over~ start_ARG italic_f end_ARG : over~ start_ARG italic_X end_ARG → blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT . Since being Cohen-Macaulay is a local property satisfied by each of the X i subscript 𝑋 𝑖 \displaystyle X_{i} italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , the space X ~ ~ 𝑋 \displaystyle\tilde{X} over~ start_ARG italic_X end_ARG is Cohen-Macaulay. Since
f ~ ∗ 𝒪 X ~ = ⨁ i = 1 r ( f | X i ) ∗ 𝒪 X i , subscript ~ 𝑓 subscript 𝒪 ~ 𝑋 superscript subscript direct-sum 𝑖 1 𝑟 subscript evaluated-at 𝑓 subscript 𝑋 𝑖 subscript 𝒪 subscript 𝑋 𝑖 \displaystyle\tilde{f}_{*}\mathcal{O}_{\tilde{X}}=\bigoplus_{i=1}^{r}(f|_{X_{i%}})_{*}\mathcal{O}_{X_{i}}, over~ start_ARG italic_f end_ARG start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT over~ start_ARG italic_X end_ARG end_POSTSUBSCRIPT = ⨁ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( italic_f | start_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ,
it follows from the construction of Fitting ideals that F 0 ( f ~ ∗ 𝒪 X ~ ) = Π i = 1 r F 0 ( ( f | X i ) ∗ 𝒪 X i ) subscript 𝐹 0 subscript ~ 𝑓 subscript 𝒪 ~ 𝑋 superscript subscript Π 𝑖 1 𝑟 subscript 𝐹 0 subscript evaluated-at 𝑓 subscript 𝑋 𝑖 subscript 𝒪 subscript 𝑋 𝑖 \displaystyle F_{0}(\tilde{f}_{*}\mathcal{O}_{\tilde{X}})=\Pi_{i=1}^{r}F_{0}((%f|_{X_{i}})_{*}\mathcal{O}_{X_{i}}) italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( over~ start_ARG italic_f end_ARG start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT over~ start_ARG italic_X end_ARG end_POSTSUBSCRIPT ) = roman_Π start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( ( italic_f | start_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) . Since f 𝑓 \displaystyle f italic_f and f ~ ~ 𝑓 \displaystyle\tilde{f} over~ start_ARG italic_f end_ARG are the same map on an open dense subset of their targets, it follows thatthe stalks of F 0 ( f ~ ∗ 𝒪 X ~ ) subscript 𝐹 0 subscript ~ 𝑓 subscript 𝒪 ~ 𝑋 \displaystyle F_{0}(\tilde{f}_{*}\mathcal{O}_{\tilde{X}}) italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( over~ start_ARG italic_f end_ARG start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT over~ start_ARG italic_X end_ARG end_POSTSUBSCRIPT ) and F 0 ( f ∗ 𝒪 X ) subscript 𝐹 0 subscript 𝑓 subscript 𝒪 𝑋 \displaystyle F_{0}(f_{*}\mathcal{O}_{X}) italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) are the same on that open dense subset. But F 0 ( f ~ ∗ 𝒪 X ~ ) subscript 𝐹 0 subscript ~ 𝑓 subscript 𝒪 ~ 𝑋 \displaystyle F_{0}(\tilde{f}_{*}\mathcal{O}_{\tilde{X}}) italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( over~ start_ARG italic_f end_ARG start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT over~ start_ARG italic_X end_ARG end_POSTSUBSCRIPT ) and F 0 ( f ∗ 𝒪 X ) subscript 𝐹 0 subscript 𝑓 subscript 𝒪 𝑋 \displaystyle F_{0}(f_{*}\mathcal{O}_{X}) italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) are principal ideals, hence they must agree.∎
3. The image of a reflection mapping 𝒴 n → ℂ n + 1 → superscript 𝒴 𝑛 superscript ℂ 𝑛 1 \displaystyle\mathcal{Y}^{n}\to\mathbb{C}^{n+1} caligraphic_Y start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT In this section we show explicit formulas for the image of a reflection map 𝒴 n → ℂ n + 1 → superscript 𝒴 𝑛 superscript ℂ 𝑛 1 \displaystyle\mathcal{Y}^{n}\to\mathbb{C}^{n+1} caligraphic_Y start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT . For any finite map-germ f : ( 𝒴 n , 0 ) → ( 𝒵 n + 1 , 0 ) : 𝑓 → superscript 𝒴 𝑛 0 superscript 𝒵 𝑛 1 0 \displaystyle f\colon(\mathcal{Y}^{n},0)\to(\mathcal{Z}^{n+1},0) italic_f : ( caligraphic_Y start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , 0 ) → ( caligraphic_Z start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT , 0 ) between complex manifolds, the ideal F 0 ( f ∗ 𝒪 𝒴 ) subscript 𝐹 0 subscript 𝑓 subscript 𝒪 𝒴 \displaystyle F_{0}(f_{*}\mathcal{O}_{\mathcal{Y}}) italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) is principal (this holds, more generally, whenever 𝒴 𝒴 \displaystyle\mathcal{Y} caligraphic_Y is an n 𝑛 \displaystyle n italic_n -dimensional Cohen Macaulay space, and it follows from [11 , Section 2.2] ). Hence, letting g 𝑔 \displaystyle g italic_g be a generator of F 0 ( f ∗ 𝒪 𝒴 ) subscript 𝐹 0 subscript 𝑓 subscript 𝒪 𝒴 \displaystyle F_{0}(f_{*}\mathcal{O}_{\mathcal{Y}}) italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) , the image of f 𝑓 \displaystyle f italic_f is
Im f = V ( g ) . Im 𝑓 𝑉 𝑔 \displaystyle\operatorname{Im}f=V(g). roman_Im italic_f = italic_V ( italic_g ) .
Putting together Proposition 2.13 and Corollary 2.10 , one obtains what follows:
Proposition 3.1 . For any reflection mapping 𝒴 n → ℂ n + 1 → superscript 𝒴 𝑛 superscript ℂ 𝑛 1 \displaystyle\mathcal{Y}^{n}\to\mathbb{C}^{n+1} caligraphic_Y start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT , the space Im f Im 𝑓 \displaystyle\operatorname{Im}f roman_Im italic_f is reduced if and only if f 𝑓 \displaystyle f italic_f is generically one-to-one, if and only if dim ( ( 𝒴 ∩ σ 𝒴 ) ∖ Fix σ ) ≤ n − 1 dim 𝒴 𝜎 𝒴 Fix 𝜎 𝑛 1 \displaystyle\operatorname{dim}((\mathcal{Y}\cap\sigma\mathcal{Y})\setminus%\operatorname{Fix}\sigma)\leq n-1 roman_dim ( ( caligraphic_Y ∩ italic_σ caligraphic_Y ) ∖ roman_Fix italic_σ ) ≤ italic_n - 1 , for all σ ∈ W ∖ { 1 } 𝜎 𝑊 1 \displaystyle\sigma\in W\setminus\{1\} italic_σ ∈ italic_W ∖ { 1 } , .
Theorem 3.2 . For any reflection mapping 𝒴 n → ℂ n + 1 → superscript 𝒴 𝑛 superscript ℂ 𝑛 1 \displaystyle\mathcal{Y}^{n}\to\mathcal{\mathbb{C}}^{n+1} caligraphic_Y start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT , Im f Im 𝑓 \displaystyle\operatorname{Im}f roman_Im italic_f is the zero locus of
g = ∏ σ ∈ W ( σ L ) ∘ s , 𝑔 subscript product 𝜎 𝑊 𝜎 𝐿 𝑠 \displaystyle g=\prod_{\sigma\in W}(\sigma L)\circ s, italic_g = ∏ start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT ( italic_σ italic_L ) ∘ italic_s ,
where s : ℂ n + 1 → 𝒱 : 𝑠 → superscript ℂ 𝑛 1 𝒱 \displaystyle s\colon\mathbb{C}^{n+1}\to\mathcal{V} italic_s : blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT → caligraphic_V is a section of ω 𝜔 \displaystyle\omega italic_ω . Equivalently, g ( X ) = Π u ∈ ω − 1 ( X ) L ( u ) | W u | 𝑔 𝑋 subscript Π 𝑢 superscript 𝜔 1 𝑋 𝐿 superscript 𝑢 superscript 𝑊 𝑢 \displaystyle g(X)=\Pi_{u\in\omega^{-1}(X)}L(u)^{|W^{u}|} italic_g ( italic_X ) = roman_Π start_POSTSUBSCRIPT italic_u ∈ italic_ω start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_X ) end_POSTSUBSCRIPT italic_L ( italic_u ) start_POSTSUPERSCRIPT | italic_W start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT | end_POSTSUPERSCRIPT .
Proof. It is immediate that g 𝑔 \displaystyle g italic_g vanishes precisely at Im f Im 𝑓 \displaystyle\operatorname{Im}f roman_Im italic_f , hence we must check that g 𝑔 \displaystyle g italic_g is holomorphic and that the analytic structure of V ( g ) 𝑉 𝑔 \displaystyle V(g) italic_V ( italic_g ) is that of V ( F 0 ( f ∗ 𝒪 𝒴 ) ) 𝑉 subscript 𝐹 0 subscript 𝑓 subscript 𝒪 𝒴 \displaystyle V(F_{0}(f_{*}\mathcal{O}_{\mathcal{Y}})) italic_V ( italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) ) . This may be verified locally in the target and, for simplicity, we will do it just at the origin.
Before comparing both structures, we show that g 𝑔 \displaystyle g italic_g is holomorphic and study the space V ( g ) 𝑉 𝑔 \displaystyle V(g) italic_V ( italic_g ) . The ring homomorphism ω ∗ : 𝒪 n + 1 → 𝒪 𝒱 , 0 : superscript 𝜔 → subscript 𝒪 𝑛 1 subscript 𝒪 𝒱 0
\displaystyle\omega^{*}\colon\mathcal{O}_{n+1}\to\mathcal{O}_{\mathcal{V},0} italic_ω start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT : caligraphic_O start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT → caligraphic_O start_POSTSUBSCRIPT caligraphic_V , 0 end_POSTSUBSCRIPT may be identified with the inclusion 𝒪 𝒱 , 0 W ↪ 𝒪 𝒱 , 0 ↪ superscript subscript 𝒪 𝒱 0
𝑊 subscript 𝒪 𝒱 0
\displaystyle\mathcal{O}_{\mathcal{V},0}^{W}\hookrightarrow\mathcal{O}_{%\mathcal{V},0} caligraphic_O start_POSTSUBSCRIPT caligraphic_V , 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT ↪ caligraphic_O start_POSTSUBSCRIPT caligraphic_V , 0 end_POSTSUBSCRIPT , where 𝒪 𝒱 , 0 W superscript subscript 𝒪 𝒱 0
𝑊 \displaystyle\mathcal{O}_{\mathcal{V},0}^{W} caligraphic_O start_POSTSUBSCRIPT caligraphic_V , 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT stands for the subring of W 𝑊 \displaystyle W italic_W -invariant germs. This identifies the ideal ω ∗ − 1 ( ⟨ Π σ ∈ W σ L ) ⟩ \displaystyle\omega_{*}^{-1}(\langle\Pi_{\sigma\in W}\sigma L)\rangle italic_ω start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( ⟨ roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ) ⟩ in 𝒪 n + 1 subscript 𝒪 𝑛 1 \displaystyle\mathcal{O}_{n+1} caligraphic_O start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT with ⟨ Π σ ∈ W σ L ⟩ ∩ 𝒪 𝒱 , 0 W delimited-⟨⟩ subscript Π 𝜎 𝑊 𝜎 𝐿 superscript subscript 𝒪 𝒱 0
𝑊 \displaystyle\langle\Pi_{\sigma\in W}\sigma L\rangle\cap\mathcal{O}_{\mathcal{%V},0}^{W} ⟨ roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ⟩ ∩ caligraphic_O start_POSTSUBSCRIPT caligraphic_V , 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT . From the fact that ⟨ Π σ ∈ W σ L ⟩ delimited-⟨⟩ subscript Π 𝜎 𝑊 𝜎 𝐿 \displaystyle\langle\Pi_{\sigma\in W}\sigma L\rangle ⟨ roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ⟩ is a principal ideal generated by a W 𝑊 \displaystyle W italic_W -invariant function, it follows that this ideal is precisely the ideal generated by Π σ ∈ W σ L subscript Π 𝜎 𝑊 𝜎 𝐿 \displaystyle\Pi_{\sigma\in W}\sigma L roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L in 𝒪 𝒱 , 0 W superscript subscript 𝒪 𝒱 0
𝑊 \displaystyle\mathcal{O}_{\mathcal{V},0}^{W} caligraphic_O start_POSTSUBSCRIPT caligraphic_V , 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT . In particular, ω ∗ − 1 ( Π σ ∈ W σ L ) superscript subscript 𝜔 1 subscript Π 𝜎 𝑊 𝜎 𝐿 \displaystyle\omega_{*}^{-1}(\Pi_{\sigma\in W}\sigma L) italic_ω start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ) is a principal ideal generated by a holomorphic function g ~ ~ 𝑔 \displaystyle\tilde{g} over~ start_ARG italic_g end_ARG , such that Π σ ∈ W σ L = g ~ ∘ ω subscript Π 𝜎 𝑊 𝜎 𝐿 ~ 𝑔 𝜔 \displaystyle\Pi_{\sigma\in W}\sigma L=\tilde{g}\circ\omega roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L = over~ start_ARG italic_g end_ARG ∘ italic_ω . Since ω 𝜔 \displaystyle\omega italic_ω is surjective, the function g ~ ~ 𝑔 \displaystyle\tilde{g} over~ start_ARG italic_g end_ARG is uniquely determined, not only among the holomorphic functions, but among all functions ℂ n + 1 → ℂ → superscript ℂ 𝑛 1 ℂ \displaystyle\mathbb{C}^{n+1}\to\mathbb{C} blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT → blackboard_C . Since the function g ( X ) = Π u ∈ ω − 1 ( X ) L ( u ) | W u | 𝑔 𝑋 subscript Π 𝑢 superscript 𝜔 1 𝑋 𝐿 superscript 𝑢 superscript 𝑊 𝑢 \displaystyle g(X)=\Pi_{u\in\omega^{-1}(X)}L(u)^{|W^{u}|} italic_g ( italic_X ) = roman_Π start_POSTSUBSCRIPT italic_u ∈ italic_ω start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_X ) end_POSTSUBSCRIPT italic_L ( italic_u ) start_POSTSUPERSCRIPT | italic_W start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT | end_POSTSUPERSCRIPT satisfies the desired equality, we conclude g = g ~ 𝑔 ~ 𝑔 \displaystyle g=\tilde{g} italic_g = over~ start_ARG italic_g end_ARG and, in particular, g 𝑔 \displaystyle g italic_g is holomorphic. Moreover, we have identified the coordinate ring of V ( g ) 𝑉 𝑔 \displaystyle V(g) italic_V ( italic_g ) with the quotient of 𝒪 𝒱 W superscript subscript 𝒪 𝒱 𝑊 \displaystyle\mathcal{O}_{\mathcal{V}}^{W} caligraphic_O start_POSTSUBSCRIPT caligraphic_V end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT by ⟨ Π σ ∈ W σ L ⟩ ∩ 𝒪 𝒱 , 0 W delimited-⟨⟩ subscript Π 𝜎 𝑊 𝜎 𝐿 superscript subscript 𝒪 𝒱 0
𝑊 \displaystyle\langle\Pi_{\sigma\in W}\sigma L\rangle\cap\mathcal{O}_{\mathcal{%V},0}^{W} ⟨ roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ⟩ ∩ caligraphic_O start_POSTSUBSCRIPT caligraphic_V , 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT . Note that this ring is a subring of 𝒪 𝒱 / ⟨ Π σ ∈ W σ L ⟩ subscript 𝒪 𝒱 delimited-⟨⟩ subscript Π 𝜎 𝑊 𝜎 𝐿 \displaystyle\mathcal{O}_{\mathcal{V}}/\langle\Pi_{\sigma\in W}\sigma L\rangle caligraphic_O start_POSTSUBSCRIPT caligraphic_V end_POSTSUBSCRIPT / ⟨ roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ⟩ .
Now we show V ( g ) ≅ V ( F 0 ( f ∗ 𝒪 𝒴 ) ) 𝑉 𝑔 𝑉 subscript 𝐹 0 subscript 𝑓 subscript 𝒪 𝒴 \displaystyle V(g)\cong V(F_{0}(f_{*}\mathcal{O}_{\mathcal{Y}})) italic_V ( italic_g ) ≅ italic_V ( italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) ) . Obviously, the explicit formula given for g 𝑔 \displaystyle g italic_g behaves well under W 𝑊 \displaystyle W italic_W -unfoldings in the same way F 0 ( f ∗ 𝒪 𝒴 ) subscript 𝐹 0 subscript 𝑓 subscript 𝒪 𝒴 \displaystyle F_{0}(f_{*}\mathcal{O}_{\mathcal{Y}}) italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) does for any unfolding (see Proposition 2.12 ). Consequently, it suffices to show the isomorphism for an unfolding of f 𝑓 \displaystyle f italic_f . Hence, in view of the Generically One-to-one Unfolding Lemma 2.11 , we may assume f 𝑓 \displaystyle f italic_f to satisfy dim ( 𝒴 ∩ σ 𝒴 ) ≤ n − 1 dim 𝒴 𝜎 𝒴 𝑛 1 \displaystyle\operatorname{dim}(\mathcal{Y}\cap\sigma\mathcal{Y})\leq n-1 roman_dim ( caligraphic_Y ∩ italic_σ caligraphic_Y ) ≤ italic_n - 1 . Since V ( g ) 𝑉 𝑔 \displaystyle V(g) italic_V ( italic_g ) and V ( F 0 ( f ∗ 𝒪 𝒴 ) ) 𝑉 subscript 𝐹 0 subscript 𝑓 subscript 𝒪 𝒴 \displaystyle V(F_{0}(f_{*}\mathcal{O}_{\mathcal{Y}})) italic_V ( italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) ) are the same at the set theoretical level, it suffices for both spaces to be reduced for them to be equal. The space V ( F 0 ( f ∗ 𝒪 𝒴 ) ) 𝑉 subscript 𝐹 0 subscript 𝑓 subscript 𝒪 𝒴 \displaystyle V(F_{0}(f_{*}\mathcal{O}_{\mathcal{Y}})) italic_V ( italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) ) is reduced by Proposition 3.1 . At the same time the condition dim ( 𝒴 ∩ σ 𝒴 ) ≤ n − 1 dim 𝒴 𝜎 𝒴 𝑛 1 \displaystyle\operatorname{dim}(\mathcal{Y}\cap\sigma\mathcal{Y})\leq n-1 roman_dim ( caligraphic_Y ∩ italic_σ caligraphic_Y ) ≤ italic_n - 1 is equivalent to the condition that V ( Π σ ∈ W σ L ) 𝑉 subscript Π 𝜎 𝑊 𝜎 𝐿 \displaystyle V(\Pi_{\sigma\in W}\sigma L) italic_V ( roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ) is reduced, which forces V ( g ) 𝑉 𝑔 \displaystyle V(g) italic_V ( italic_g ) to be reduced because, as we mentioned before, the stalk of 𝒪 V ( g ) subscript 𝒪 𝑉 𝑔 \displaystyle\mathcal{O}_{V(g)} caligraphic_O start_POSTSUBSCRIPT italic_V ( italic_g ) end_POSTSUBSCRIPT is a subrings of stalks of 𝒪 𝒱 / ⟨ Π σ ∈ W σ L ⟩ subscript 𝒪 𝒱 delimited-⟨⟩ subscript Π 𝜎 𝑊 𝜎 𝐿 \displaystyle\mathcal{O}_{\mathcal{V}}/\langle\Pi_{\sigma\in W}\sigma L\rangle caligraphic_O start_POSTSUBSCRIPT caligraphic_V end_POSTSUBSCRIPT / ⟨ roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ⟩ .∎
Remark 3.3 . The same formula applies to compute images of singular hypersurfaces. To be precise,if 𝒴 = V ( L ) ⊆ 𝒱 𝒴 𝑉 𝐿 𝒱 \displaystyle\mathcal{Y}=V(L)\subseteq\mathcal{V} caligraphic_Y = italic_V ( italic_L ) ⊆ caligraphic_V is a singular hypersurface (instead of a complex manifold), then g = Π σ ∈ W ( σ L ) ∘ s 𝑔 subscript Π 𝜎 𝑊 𝜎 𝐿 𝑠 \displaystyle g=\Pi_{\sigma\in W}(\sigma L)\circ s italic_g = roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT ( italic_σ italic_L ) ∘ italic_s computes a generator of the ideal F 0 ( ( ω | 𝒴 ) ∗ 𝒪 𝒴 ) \displaystyle F_{0}((\omega_{|_{\mathcal{Y}}})_{*}\mathcal{O}_{\mathcal{Y}}) italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( ( italic_ω start_POSTSUBSCRIPT | start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) , which defines the image of 𝒴 𝒴 \displaystyle\mathcal{Y} caligraphic_Y by ω 𝜔 \displaystyle\omega italic_ω . Briefly speaking, the formula holds because it is correct on the dense open subset where 𝒴 𝒴 \displaystyle\mathcal{Y} caligraphic_Y is smooth, but this forces it to be correct everywhere. If 𝒴 𝒴 \displaystyle\mathcal{Y} caligraphic_Y is non reduced, one shows the claim by taking a W 𝑊 \displaystyle W italic_W -unfolding with reduced generic fiber.
Example 3.4 . Consider the group ℤ / d 1 × ⋯ × ℤ / d n + 1 ℤ subscript 𝑑 1 ⋯ ℤ subscript 𝑑 𝑛 1 \displaystyle\mathbb{Z}/d_{1}\times\dots\times\mathbb{Z}/d_{n+1} blackboard_Z / italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT × ⋯ × blackboard_Z / italic_d start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT acting on ℂ n + 1 superscript ℂ 𝑛 1 \displaystyle\mathbb{C}^{n+1} blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT . Then,
g = ∏ 0 ≤ a i < d i L ( ξ 1 a 1 X 1 d 1 , … , ξ n + 1 a n + 1 X 1 d n + 1 ) 𝑔 subscript product 0 subscript 𝑎 𝑖 subscript 𝑑 𝑖
𝐿 superscript subscript 𝜉 1 subscript 𝑎 1 superscript 𝑋 1 subscript 𝑑 1 … superscript subscript 𝜉 𝑛 1 subscript 𝑎 𝑛 1 superscript 𝑋 1 subscript 𝑑 𝑛 1 \displaystyle g=\prod_{\begin{subarray}{c}0\leq a_{i}<d_{i}\end{subarray}}L(%\xi_{1}^{a_{1}}X^{\frac{1}{d_{1}}},\dots,\xi_{n+1}^{a_{n+1}}X^{\frac{1}{d_{n+1%}}}) italic_g = ∏ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL 0 ≤ italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_CELL end_ROW end_ARG end_POSTSUBSCRIPT italic_L ( italic_ξ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_X start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG end_POSTSUPERSCRIPT , … , italic_ξ start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_X start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_d start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT end_ARG end_POSTSUPERSCRIPT )
One does not need to worry about the definition of the complex square root, because any choice of a section of ω 𝜔 \displaystyle\omega italic_ω will give the same final result.
Take, for example the fold mappings ( x , y ) ↦ ( x , y 2 , y P ( x , y 2 ) ) maps-to 𝑥 𝑦 𝑥 superscript 𝑦 2 𝑦 𝑃 𝑥 superscript 𝑦 2 \displaystyle(x,y)\mapsto(x,y^{2},yP(x,y^{2})) ( italic_x , italic_y ) ↦ ( italic_x , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_y italic_P ( italic_x , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ) of Example 2.4 . The ideal of 𝒴 𝒴 \displaystyle\mathcal{Y} caligraphic_Y is generated by L ( u , v , w ) = w − v P ( u , v 2 ) 𝐿 𝑢 𝑣 𝑤 𝑤 𝑣 𝑃 𝑢 superscript 𝑣 2 \displaystyle L(u,v,w)=w-vP(u,v^{2}) italic_L ( italic_u , italic_v , italic_w ) = italic_w - italic_v italic_P ( italic_u , italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) , hence the image is the zero locus of
g = ( Z − Y P ( X , Y ) ) ( Z + Y P ( X , Y ) ) = Z 2 − Y P 2 ( X , Y ) . 𝑔 𝑍 𝑌 𝑃 𝑋 𝑌 𝑍 𝑌 𝑃 𝑋 𝑌 superscript 𝑍 2 𝑌 superscript 𝑃 2 𝑋 𝑌 \displaystyle g=(Z-\sqrt{Y}P(X,Y))(Z+\sqrt{Y}P(X,Y))=Z^{2}-YP^{2}(X,Y). italic_g = ( italic_Z - square-root start_ARG italic_Y end_ARG italic_P ( italic_X , italic_Y ) ) ( italic_Z + square-root start_ARG italic_Y end_ARG italic_P ( italic_X , italic_Y ) ) = italic_Z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_Y italic_P start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_X , italic_Y ) .
For double folds ( x , y ) ↦ ( x 2 , y 2 , x P 1 ( x 2 , y 2 ) + y P 2 ( x 2 , y 2 ) + x y P 3 ( x 2 , y 2 ) ) maps-to 𝑥 𝑦 superscript 𝑥 2 superscript 𝑦 2 𝑥 subscript 𝑃 1 superscript 𝑥 2 superscript 𝑦 2 𝑦 subscript 𝑃 2 superscript 𝑥 2 superscript 𝑦 2 𝑥 𝑦 subscript 𝑃 3 superscript 𝑥 2 superscript 𝑦 2 \displaystyle(x,y)\mapsto(x^{2},y^{2},xP_{1}(x^{2},y^{2})+yP_{2}(x^{2},y^{2})+%xyP_{3}(x^{2},y^{2})) ( italic_x , italic_y ) ↦ ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_x italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + italic_y italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + italic_x italic_y italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ) (also Example 2.4 ) one has L ( u , v , w ) = w − u P 1 ( u 2 , v 2 ) − v P 2 ( u 2 , v 2 ) − u v P 3 ( u 2 , v 2 ) 𝐿 𝑢 𝑣 𝑤 𝑤 𝑢 subscript 𝑃 1 superscript 𝑢 2 superscript 𝑣 2 𝑣 subscript 𝑃 2 superscript 𝑢 2 superscript 𝑣 2 𝑢 𝑣 subscript 𝑃 3 superscript 𝑢 2 superscript 𝑣 2 \displaystyle L(u,v,w)=w-uP_{1}(u^{2},v^{2})-vP_{2}(u^{2},v^{2})-uvP_{3}(u^{2}%,v^{2}) italic_L ( italic_u , italic_v , italic_w ) = italic_w - italic_u italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) - italic_v italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) - italic_u italic_v italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) and, writing P i = P i ( X , Y ) subscript 𝑃 𝑖 subscript 𝑃 𝑖 𝑋 𝑌 \displaystyle P_{i}=P_{i}(X,Y) italic_P start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_P start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_X , italic_Y ) , one gets
g = 𝑔 absent \displaystyle\displaystyle g= italic_g = ( Z − X P 1 − Y P 2 − X Y P 3 ) ⋅ ( Z + X P 1 − Y P 2 + X Y P 3 ) ⋅ \displaystyle\displaystyle(Z-\sqrt{X}P_{1}-\sqrt{Y}P_{2}-\sqrt{XY}P_{3})\cdot(%Z+\sqrt{X}P_{1}-\sqrt{Y}P_{2}+\sqrt{XY}P_{3})\cdot ( italic_Z - square-root start_ARG italic_X end_ARG italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - square-root start_ARG italic_Y end_ARG italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - square-root start_ARG italic_X italic_Y end_ARG italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) ⋅ ( italic_Z + square-root start_ARG italic_X end_ARG italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - square-root start_ARG italic_Y end_ARG italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + square-root start_ARG italic_X italic_Y end_ARG italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) ⋅ ( Z − X P 1 + Y P 2 + X Y P 3 ) ⋅ ( Z + X P 1 + Y P 2 − X Y P 3 ) ⋅ 𝑍 𝑋 subscript 𝑃 1 𝑌 subscript 𝑃 2 𝑋 𝑌 subscript 𝑃 3 𝑍 𝑋 subscript 𝑃 1 𝑌 subscript 𝑃 2 𝑋 𝑌 subscript 𝑃 3 \displaystyle\displaystyle(Z-\sqrt{X}P_{1}+\sqrt{Y}P_{2}+\sqrt{XY}P_{3})\cdot(%Z+\sqrt{X}P_{1}+\sqrt{Y}P_{2}-\sqrt{XY}P_{3}) ( italic_Z - square-root start_ARG italic_X end_ARG italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + square-root start_ARG italic_Y end_ARG italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + square-root start_ARG italic_X italic_Y end_ARG italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) ⋅ ( italic_Z + square-root start_ARG italic_X end_ARG italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + square-root start_ARG italic_Y end_ARG italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - square-root start_ARG italic_X italic_Y end_ARG italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) = \displaystyle\displaystyle= = ( Z 2 − X P 1 2 − Y P 2 2 − X Y P 3 2 ) 2 − 4 X Y ( 2 P 1 P 2 P 3 + P 1 2 P 2 2 + X P 1 2 P 3 2 + Y P 2 2 P 3 2 ) . superscript superscript 𝑍 2 𝑋 superscript subscript 𝑃 1 2 𝑌 superscript subscript 𝑃 2 2 𝑋 𝑌 superscript subscript 𝑃 3 2 2 4 𝑋 𝑌 2 subscript 𝑃 1 subscript 𝑃 2 subscript 𝑃 3 superscript subscript 𝑃 1 2 superscript subscript 𝑃 2 2 𝑋 superscript subscript 𝑃 1 2 superscript subscript 𝑃 3 2 𝑌 superscript subscript 𝑃 2 2 superscript subscript 𝑃 3 2 \displaystyle\displaystyle(Z^{2}-XP_{1}^{2}-YP_{2}^{2}-XYP_{3}^{2})^{2}-4XY(2P%_{1}P_{2}P_{3}+P_{1}^{2}P_{2}^{2}+XP_{1}^{2}P_{3}^{2}+YP_{2}^{2}P_{3}^{2}). ( italic_Z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_X italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_Y italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_X italic_Y italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 4 italic_X italic_Y ( 2 italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_X italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_Y italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) .
Example 3.5 (Image of f D 8 superscript 𝑓 subscript 𝐷 8 \displaystyle f^{D_{8}} italic_f start_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ). Consider the D 8 subscript 𝐷 8 \displaystyle D_{8} italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT -reflected graph of Example 2.4 ,
f 1 D 8 : ( x , y ) ↦ ( x 2 + y 2 , x 2 y 2 , 2 x + y ) . : subscript superscript 𝑓 subscript 𝐷 8 1 maps-to 𝑥 𝑦 superscript 𝑥 2 superscript 𝑦 2 superscript 𝑥 2 superscript 𝑦 2 2 𝑥 𝑦 \displaystyle f^{D_{8}}_{1}\colon(x,y)\mapsto(x^{2}+y^{2},x^{2}y^{2},2x+y). italic_f start_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT : ( italic_x , italic_y ) ↦ ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , 2 italic_x + italic_y ) .
A generator of the ideal of 𝒴 𝒴 \displaystyle\mathcal{Y} caligraphic_Y is L ( u , v , w ) = w − 2 u − v 𝐿 𝑢 𝑣 𝑤 𝑤 2 𝑢 𝑣 \displaystyle L(u,v,w)=w-2u-v italic_L ( italic_u , italic_v , italic_w ) = italic_w - 2 italic_u - italic_v and a section of ω 𝜔 \displaystyle\omega italic_ω is, for example,
s ( X , Y , Z ) = ( 2 Y X − X 2 − 4 Y , X − X 2 − 4 Y 2 , Z ) . 𝑠 𝑋 𝑌 𝑍 2 𝑌 𝑋 superscript 𝑋 2 4 𝑌 𝑋 superscript 𝑋 2 4 𝑌 2 𝑍 \displaystyle s(X,Y,Z)=\left(\sqrt{\frac{2Y}{X-\sqrt{X^{2}-4Y}}},\sqrt{\frac{X%-\sqrt{X^{2}-4Y}}{2}},Z\right). italic_s ( italic_X , italic_Y , italic_Z ) = ( square-root start_ARG divide start_ARG 2 italic_Y end_ARG start_ARG italic_X - square-root start_ARG italic_X start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 4 italic_Y end_ARG end_ARG end_ARG , square-root start_ARG divide start_ARG italic_X - square-root start_ARG italic_X start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 4 italic_Y end_ARG end_ARG start_ARG 2 end_ARG end_ARG , italic_Z ) .
Multiplying the elements in the orbit of L = w − 2 u − v 𝐿 𝑤 2 𝑢 𝑣 \displaystyle L=w-2u-v italic_L = italic_w - 2 italic_u - italic_v gives the function
∏ σ ∈ W σ L = subscript product 𝜎 𝑊 𝜎 𝐿 absent \displaystyle\displaystyle\prod_{\sigma\in W}\sigma L= ∏ start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L = ( w − 2 u − v ) ( w + 2 u − v ) ( w − 2 u − v ) ( w − 2 u + v ) 𝑤 2 𝑢 𝑣 𝑤 2 𝑢 𝑣 𝑤 2 𝑢 𝑣 𝑤 2 𝑢 𝑣 \displaystyle\displaystyle(w-2u-v)(w+2u-v)(w-2u-v)(w-2u+v) ( italic_w - 2 italic_u - italic_v ) ( italic_w + 2 italic_u - italic_v ) ( italic_w - 2 italic_u - italic_v ) ( italic_w - 2 italic_u + italic_v ) ( w + 2 v + u ) ( w − 2 v + u ) ( w + 2 u + v ) ( w + 2 v − u ) . 𝑤 2 𝑣 𝑢 𝑤 2 𝑣 𝑢 𝑤 2 𝑢 𝑣 𝑤 2 𝑣 𝑢 \displaystyle\displaystyle(w+2v+u)(w-2v+u)(w+2u+v)(w+2v-u). ( italic_w + 2 italic_v + italic_u ) ( italic_w - 2 italic_v + italic_u ) ( italic_w + 2 italic_u + italic_v ) ( italic_w + 2 italic_v - italic_u ) .
Taking the composition with s 𝑠 \displaystyle s italic_s , the square roots vanish and we obtain the expression
g = 16 X 4 − 200 X 2 Y + 625 Y 2 − 40 X 3 Z 2 + 70 X Y Z 2 + 33 X 2 Z 4 − 14 Y Z 4 − 10 X Z 6 + Z 8 . 𝑔 16 superscript 𝑋 4 200 superscript 𝑋 2 𝑌 625 superscript 𝑌 2 40 superscript 𝑋 3 superscript 𝑍 2 70 𝑋 𝑌 superscript 𝑍 2 33 superscript 𝑋 2 superscript 𝑍 4 14 𝑌 superscript 𝑍 4 10 𝑋 superscript 𝑍 6 superscript 𝑍 8 \displaystyle g=16X^{4}-200X^{2}Y+625Y^{2}-40X^{3}Z^{2}+70XYZ^{2}+33X^{2}Z^{4}%-14YZ^{4}-10XZ^{6}+Z^{8}. italic_g = 16 italic_X start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 200 italic_X start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_Y + 625 italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 40 italic_X start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_Z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 70 italic_X italic_Y italic_Z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 33 italic_X start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_Z start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 14 italic_Y italic_Z start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 10 italic_X italic_Z start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT + italic_Z start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT .
The same method gives the equation of the image of
f 2 D 8 : ( x , y ) ↦ ( x 2 + y 2 , x 2 y 2 , 2 x 2 + 3 x y − y 2 + 2 x 3 + 8 x 2 y − 2 x y 2 − 2 y 3 ) , : subscript superscript 𝑓 subscript 𝐷 8 2 maps-to 𝑥 𝑦 superscript 𝑥 2 superscript 𝑦 2 superscript 𝑥 2 superscript 𝑦 2 2 superscript 𝑥 2 3 𝑥 𝑦 superscript 𝑦 2 2 superscript 𝑥 3 8 superscript 𝑥 2 𝑦 2 𝑥 superscript 𝑦 2 2 superscript 𝑦 3 \displaystyle f^{D_{8}}_{2}\colon(x,y)\mapsto(x^{2}+y^{2},x^{2}y^{2},2x^{2}+3%xy-y^{2}+2x^{3}+8x^{2}y-2xy^{2}-2y^{3}), italic_f start_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT : ( italic_x , italic_y ) ↦ ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , 2 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_x italic_y - italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 8 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y - 2 italic_x italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 italic_y start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) ,
but it is too big to be written here. Both surfaces are depicted in Figure 1 .
Remark 3.6 . Let f = ( ω , H ) 𝑓 𝜔 𝐻 \displaystyle f=(\omega,H) italic_f = ( italic_ω , italic_H ) be a W 𝑊 \displaystyle W italic_W -reflected graph, and let d 1 , … , d n subscript 𝑑 1 … subscript 𝑑 𝑛
\displaystyle d_{1},\dots,d_{n} italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_d start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT be the degrees of the coordinates functions of ω 𝜔 \displaystyle\omega italic_ω . If H 𝐻 \displaystyle H italic_H is homogeneous of degree d 𝑑 \displaystyle d italic_d , then f 𝑓 \displaystyle f italic_f is obviously homogeneous, with degrees d 1 , … , d n , d subscript 𝑑 1 … subscript 𝑑 𝑛 𝑑
\displaystyle d_{1},\dots,d_{n},d italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_d start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_d . As a consequence of Theorem 3.2 , the function g 𝑔 \displaystyle g italic_g defining Im f Im 𝑓 \displaystyle\operatorname{Im}f roman_Im italic_f is quasi-homogeneous with weightsd 1 , … , d n , d subscript 𝑑 1 … subscript 𝑑 𝑛 𝑑
\displaystyle d_{1},\dots,d_{n},d italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_d start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_d and degree d | W | 𝑑 𝑊 \displaystyle d|W| italic_d | italic_W | .
Computing the image via elimination of variables Computing explicit expressions of sections of orbit mappings can be hard and, even if we manage to find them, the formula Π σ ∈ W σ L ∘ s subscript Π 𝜎 𝑊 𝜎 𝐿 𝑠 \displaystyle\Pi_{\sigma\in W}\,\sigma L\circ s roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ∘ italic_s becomes too tedious to compute by hand when we take bigger reflection groups. If we try to implement the expression in some computer software, we face the fact that the coordinate functions of sections are non-polynomial, which is a problem when using commutative algebra software such as Singular . Here we introduce two alternative ways of computing the ideal F 0 ( f ∗ 𝒪 𝒴 ) subscript 𝐹 0 subscript 𝑓 subscript 𝒪 𝒴 \displaystyle F_{0}(f_{*}\mathcal{O}_{\mathcal{Y}}) italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) defining the image, without resorting to sections of ω 𝜔 \displaystyle\omega italic_ω . As a trade-off, this methods use elimination of variables, which is less explicit, but it is a task computers are happy to do, or at least to try to.
In the case at hand, elimination of variables means what follows: Consider the ring ℂ [ u , X ] ℂ 𝑢 𝑋 \displaystyle\mathbb{C}[u,X] blackboard_C [ italic_u , italic_X ] of polynomials on the variables u 1 , … , u p subscript 𝑢 1 … subscript 𝑢 𝑝
\displaystyle u_{1},\dots,u_{p} italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_u start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT and X 1 , … X p subscript 𝑋 1 … subscript 𝑋 𝑝
\displaystyle X_{1},\dots X_{p} italic_X start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_X start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT (the same works for, say, the ring of germs of holomorphic functions at the origin). Contained in ℂ [ u , X ] ℂ 𝑢 𝑋 \displaystyle\mathbb{C}[u,X] blackboard_C [ italic_u , italic_X ] , there is the ideal
J = ⟨ ∏ σ ∈ W σ L ( u ) ⟩ + ⟨ X 1 − ω 1 ( u ) , … , X p − ω p ( u ) ⟩ , 𝐽 delimited-⟨⟩ subscript product 𝜎 𝑊 𝜎 𝐿 𝑢 subscript 𝑋 1 subscript 𝜔 1 𝑢 … subscript 𝑋 𝑝 subscript 𝜔 𝑝 𝑢
\displaystyle J=\langle\prod_{\sigma\in W}\sigma L(u)\rangle+\langle X_{1}-%\omega_{1}(u),\dots,X_{p}-\omega_{p}(u)\rangle, italic_J = ⟨ ∏ start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ( italic_u ) ⟩ + ⟨ italic_X start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_u ) , … , italic_X start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT - italic_ω start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_u ) ⟩ ,
and the subring ℂ [ X ] ℂ delimited-[] 𝑋 \displaystyle\mathbb{C}[X] blackboard_C [ italic_X ] of polynomials in X 1 , … X p subscript 𝑋 1 … subscript 𝑋 𝑝
\displaystyle X_{1},\dots X_{p} italic_X start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_X start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT . Then, J ∩ ℂ [ X ] 𝐽 ℂ delimited-[] 𝑋 \displaystyle J\cap\mathbb{C}[X] italic_J ∩ blackboard_C [ italic_X ] is an ideal in ℂ [ X ] ℂ delimited-[] 𝑋 \displaystyle\mathbb{C}[X] blackboard_C [ italic_X ] , said to be obtained by eliminating the u 𝑢 \displaystyle u italic_u variables in J 𝐽 \displaystyle J italic_J . Alternatively, consider the ring homomorphism
ω ∗ : ℂ [ X ] → ℂ [ u ] , : superscript 𝜔 → ℂ delimited-[] 𝑋 ℂ delimited-[] 𝑢 \displaystyle\omega^{*}\colon\mathbb{C}[X]\to\mathbb{C}[u], italic_ω start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT : blackboard_C [ italic_X ] → blackboard_C [ italic_u ] ,
given by H ↦ H ∘ ω maps-to 𝐻 𝐻 𝜔 \displaystyle H\mapsto H\circ\omega italic_H ↦ italic_H ∘ italic_ω . Then, the elimination can be expressed as
J ∩ ℂ [ X ] = ( ω ∗ ) − 1 ⟨ ∏ σ ∈ W σ L ( u ) ⟩ . 𝐽 ℂ delimited-[] 𝑋 superscript superscript 𝜔 1 delimited-⟨⟩ subscript product 𝜎 𝑊 𝜎 𝐿 𝑢 \displaystyle J\cap\mathbb{C}[X]=(\omega^{*})^{-1}\langle\prod_{\sigma\in W}%\sigma L(u)\rangle. italic_J ∩ blackboard_C [ italic_X ] = ( italic_ω start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ⟨ ∏ start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ( italic_u ) ⟩ .
Proposition 3.7 . For any reflection mapping f : 𝒴 n → ℂ n + 1 : 𝑓 → superscript 𝒴 𝑛 superscript ℂ 𝑛 1 \displaystyle f\colon\mathcal{Y}^{n}\to\mathbb{C}^{n+1} italic_f : caligraphic_Y start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → blackboard_C start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT , Im f Im 𝑓 \displaystyle\operatorname{Im}f roman_Im italic_f is the zero locus of
F 0 ( f ∗ 𝒪 𝒴 ) = ( ω ∗ ) − 1 ⟨ ∏ σ ∈ W σ L ⟩ = ( ( ω ∗ ) − 1 ⟨ L ⟩ ) | W 𝒴 : W 𝒴 | . \displaystyle F_{0}(f_{*}\mathcal{O}_{\mathcal{Y}})=(\omega^{*})^{-1}\langle%\prod_{\sigma\in W}\sigma L\rangle=\left((\omega^{*})^{-1}\langle L\rangle%\right)^{|W^{\mathcal{Y}}:W_{\mathcal{Y}}|}. italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) = ( italic_ω start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ⟨ ∏ start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ⟩ = ( ( italic_ω start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ⟨ italic_L ⟩ ) start_POSTSUPERSCRIPT | italic_W start_POSTSUPERSCRIPT caligraphic_Y end_POSTSUPERSCRIPT : italic_W start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT | end_POSTSUPERSCRIPT .
Proof. The first equality was shown in the proof of Theorem 3.2 . For the second equality, let
K = ⟨ L ( u ) ⟩ + ⟨ X 1 − ω 1 ( u ) , … , X p − ω p ( u ) ⟩ , 𝐾 delimited-⟨⟩ 𝐿 𝑢 subscript 𝑋 1 subscript 𝜔 1 𝑢 … subscript 𝑋 𝑝 subscript 𝜔 𝑝 𝑢
\displaystyle K=\langle L(u)\rangle+\langle X_{1}-\omega_{1}(u),\dots,X_{p}-%\omega_{p}(u)\rangle, italic_K = ⟨ italic_L ( italic_u ) ⟩ + ⟨ italic_X start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_u ) , … , italic_X start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT - italic_ω start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_u ) ⟩ ,
Since V ( K ) ≅ V ( L ) = 𝒴 𝑉 𝐾 𝑉 𝐿 𝒴 \displaystyle V(K)\cong V(L)=\mathcal{Y} italic_V ( italic_K ) ≅ italic_V ( italic_L ) = caligraphic_Y , it follows that K 𝐾 \displaystyle K italic_K is radical, hence K ∩ ℂ [ X ] 𝐾 ℂ delimited-[] 𝑋 \displaystyle K\cap\mathbb{C}[X] italic_K ∩ blackboard_C [ italic_X ] is radical. This means that K ∩ ℂ [ X ] 𝐾 ℂ delimited-[] 𝑋 \displaystyle K\cap\mathbb{C}[X] italic_K ∩ blackboard_C [ italic_X ] is the (radical) ideal of the image of f 𝑓 \displaystyle f italic_f . At the same time, we know by Proposition 2.8 that the degree of f 𝑓 \displaystyle f italic_f is | W 𝒴 : W 𝒴 | \displaystyle|W^{\mathcal{Y}}:W_{\mathcal{Y}}| | italic_W start_POSTSUPERSCRIPT caligraphic_Y end_POSTSUPERSCRIPT : italic_W start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT | . Putting both things together, the equality F 0 ( f ∗ 𝒪 𝒴 ) = ( K ∩ ℂ [ X ] ) | W 𝒴 : W 𝒴 | \displaystyle F_{0}(f_{*}\mathcal{O}_{\mathcal{Y}})=(K\cap\mathbb{C}[X])^{|W^{%\mathcal{Y}}:W_{\mathcal{Y}}|} italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT ) = ( italic_K ∩ blackboard_C [ italic_X ] ) start_POSTSUPERSCRIPT | italic_W start_POSTSUPERSCRIPT caligraphic_Y end_POSTSUPERSCRIPT : italic_W start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT | end_POSTSUPERSCRIPT is a direct application of Proposition 2.13 .∎
In practice, our experience shows that computing ( ω ∗ ) − 1 ⟨ Π σ ∈ W σ L ⟩ superscript superscript 𝜔 1 delimited-⟨⟩ subscript Π 𝜎 𝑊 𝜎 𝐿 \displaystyle(\omega^{*})^{-1}\langle\Pi_{\sigma\in W}\sigma L\rangle ( italic_ω start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ⟨ roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ⟩ is faster than computing ( ω ∗ ) − 1 ⟨ L ⟩ superscript superscript 𝜔 1 delimited-⟨⟩ 𝐿 \displaystyle(\omega^{*})^{-1}\langle L\rangle ( italic_ω start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ⟨ italic_L ⟩ , probably due to the fact that Π σ ∈ W σ L subscript Π 𝜎 𝑊 𝜎 𝐿 \displaystyle\Pi_{\sigma\in W}\sigma L roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L is a W 𝑊 \displaystyle W italic_W -invariant function.
Example 3.8 . Consider the family of 𝔖 4 subscript 𝔖 4 \displaystyle\mathfrak{S_{4}} fraktur_S start_POSTSUBSCRIPT fraktur_4 end_POSTSUBSCRIPT -reflection mappings of Example 2.7 . Sections of the orbit mapping of 𝔖 4 subscript 𝔖 4 \displaystyle\mathfrak{S_{4}} fraktur_S start_POSTSUBSCRIPT fraktur_4 end_POSTSUBSCRIPT have horrendous expressions, so computing Im f Im 𝑓 \displaystyle\operatorname{Im}f roman_Im italic_f by means of the expression Π σ ∈ W σ L ∘ s subscript Π 𝜎 𝑊 𝜎 𝐿 𝑠 \displaystyle\Pi_{\sigma\in W}\,\sigma L\circ s roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ∘ italic_s of Theorem 3.2 is not convenient. In contrast, Singular computes ( ω ∗ ) − 1 ⟨ Π σ ∈ W σ L ⟩ superscript superscript 𝜔 1 delimited-⟨⟩ subscript Π 𝜎 𝑊 𝜎 𝐿 \displaystyle(\omega^{*})^{-1}\langle\Pi_{\sigma\in W}\sigma L\rangle ( italic_ω start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ⟨ roman_Π start_POSTSUBSCRIPT italic_σ ∈ italic_W end_POSTSUBSCRIPT italic_σ italic_L ⟩ in no time. The equation of the image of the unfolding F = ( f t , t ) 𝐹 subscript 𝑓 𝑡 𝑡 \displaystyle F=(f_{t},t) italic_F = ( italic_f start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_t ) is too long to write here but, for t = 0 𝑡 0 \displaystyle t=0 italic_t = 0 and t = 1 𝑡 1 \displaystyle t=1 italic_t = 1 , we obtain the following equations:
Im f 0 𝔖 4 = V ( g ) , g = ( 2 x 3 y 2 + x 4 z − 27 y 4 − 18 x y 2 z − 2 x 2 z 2 + z 3 ) 2 , formulae-sequence Im subscript superscript 𝑓 subscript 𝔖 4 0 𝑉 𝑔 𝑔 superscript 2 superscript 𝑥 3 superscript 𝑦 2 superscript 𝑥 4 𝑧 27 superscript 𝑦 4 18 𝑥 superscript 𝑦 2 𝑧 2 superscript 𝑥 2 superscript 𝑧 2 superscript 𝑧 3 2 \displaystyle\operatorname{Im}f^{\mathfrak{S_{4}}}_{0}=V(g),\quad g=(2x^{3}y^{%2}+x^{4}z-27y^{4}-18xy^{2}z-2x^{2}z^{2}+z^{3})^{2}, roman_Im italic_f start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT fraktur_4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_V ( italic_g ) , italic_g = ( 2 italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_x start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_z - 27 italic_y start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 18 italic_x italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_z - 2 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_z start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,
Im f 1 𝔖 4 = V ( g ) , g = 614656 x 12 − 174822592 x 9 y 2 − 16020256 x 10 z + 10356692964 x 6 y 4 + 800288220 x 7 y 2 z + 153738321 x 8 z 2 − 198333009364 x 3 y 6 − 33901243950 x 4 y 4 z − 662345364 x 5 y 2 z 2 − 685828516 x 6 z 3 + 1202174306137 y 8 + 372758486548 x y 6 z + 7876328208 x 2 y 4 z 2 − 1163406956 x 3 y 2 z 3 + 1546928326 x 4 z 4 + 40000919994 y 4 z 3 + 1284226020 x y 2 z 4 − 1713759300 x 2 z 5 + 741200625 z 6 . \displaystyle\begin{split}\operatorname{Im}f^{\mathfrak{S_{4}}}_{1}=V(g),\quadg%=614656x^{12}-174822592x^{9}y^{2}-16020256x^{10}z+10356692964x^{6}y^{4}\\+800288220x^{7}y^{2}z+153738321x^{8}z^{2}-198333009364x^{3}y^{6}-33901243950x^%{4}y^{4}z\\-662345364x^{5}y^{2}z^{2}-685828516x^{6}z^{3}+1202174306137y^{8}+372758486548%xy^{6}z\\+7876328208x^{2}y^{4}z^{2}-1163406956x^{3}y^{2}z^{3}+1546928326x^{4}z^{4}+4000%0919994y^{4}z^{3}\\+1284226020xy^{2}z^{4}-1713759300x^{2}z^{5}+741200625z^{6}.\end{split} start_ROW start_CELL roman_Im italic_f start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT fraktur_4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_V ( italic_g ) , italic_g = 614656 italic_x start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT - 174822592 italic_x start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 16020256 italic_x start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT italic_z + 10356692964 italic_x start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL + 800288220 italic_x start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_z + 153738321 italic_x start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 198333009364 italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT - 33901243950 italic_x start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_z end_CELL end_ROW start_ROW start_CELL - 662345364 italic_x start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 685828516 italic_x start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT italic_z start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 1202174306137 italic_y start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT + 372758486548 italic_x italic_y start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT italic_z end_CELL end_ROW start_ROW start_CELL + 7876328208 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 1163406956 italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_z start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 1546928326 italic_x start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_z start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + 40000919994 italic_y start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_z start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL + 1284226020 italic_x italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_z start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 1713759300 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_z start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT + 741200625 italic_z start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT . end_CELL end_ROW
The hypersurces Im f 0 𝔖 4 Im subscript superscript 𝑓 subscript 𝔖 4 0 \displaystyle\operatorname{Im}f^{\mathfrak{S_{4}}}_{0} roman_Im italic_f start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT fraktur_4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and Im f 1 𝔖 4 Im subscript superscript 𝑓 subscript 𝔖 4 1 \displaystyle\operatorname{Im}f^{\mathfrak{S_{4}}}_{1} roman_Im italic_f start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT fraktur_4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT are depicted in Figure 2 . Recall that Im f 0 𝔖 4 Im subscript superscript 𝑓 subscript 𝔖 4 0 \displaystyle\operatorname{Im}f^{\mathfrak{S_{4}}}_{0} roman_Im italic_f start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT fraktur_4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the discriminant of ω 𝜔 \displaystyle\omega italic_ω , with non-reduced structure, and that the exponent 2 2 \displaystyle 2 2 in the equation reflects the fact that f 0 𝔖 4 subscript superscript 𝑓 subscript 𝔖 4 0 \displaystyle f^{\mathfrak{S_{4}}}_{0} italic_f start_POSTSUPERSCRIPT fraktur_S start_POSTSUBSCRIPT fraktur_4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT has degree two (see Example 2.9 ).
Remark 3.9 . The calculations shown before have been carried out by means of a Singular library for reflection mappings, being developed by the authors of this paper. We are happy to send the latest version to anyone interested.
4. Decomposition of the double point spaces K 2 ( f ) , D 2 ( f ) subscript 𝐾 2 𝑓 superscript 𝐷 2 𝑓
\displaystyle K_{2}(f),D^{2}(f) italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) , italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) and D ( f ) 𝐷 𝑓 \displaystyle D(f) italic_D ( italic_f ) .Given a germ of singular mapping, studying only the equations of the image somehow means forgetting that these are parametrizable singularities, that is, that these singularities are obtained by glueing one disk by means of a holomorphic mapping (or several disks, in the multi-germ case). Instead, it usual to study singular mappings by means of their multiple-point spaces, which are spaces designed to encode how points in the source glue together to form the image of the map.
There are double point and triple point spaces, as well as higher multiplicity ones, but here we restrict ourselves to double points. Even then, there are several different double point spaces one can look at. Our original interest is to prove an explicit formula for the double point space D ( f ) ⊆ 𝒴 𝐷 𝑓 𝒴 \displaystyle D(f)\subseteq\mathcal{Y} italic_D ( italic_f ) ⊆ caligraphic_Y in the case where f 𝑓 \displaystyle f italic_f is a reflection mapping given by a hypersurface 𝒴 ⊆ 𝒱 𝒴 𝒱 \displaystyle\mathcal{Y}\subseteq\mathcal{V} caligraphic_Y ⊆ caligraphic_V (see Theorem 5.2 . The definitions of D ( f ) 𝐷 𝑓 \displaystyle D(f) italic_D ( italic_f ) and other double point spaces are given later on this section). However, as the logic structure of this and the following section reveal, this is best done by studying first the double point space D 2 ( f ) ⊆ 𝒴 × 𝒴 superscript 𝐷 2 𝑓 𝒴 𝒴 \displaystyle D^{2}(f)\subseteq\mathcal{Y}\times\mathcal{Y} italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) ⊆ caligraphic_Y × caligraphic_Y . This in turn requires looking at a more abstract double point space K 2 ( f ) superscript 𝐾 2 𝑓 \displaystyle K^{2}(f) italic_K start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) , which enjoys a key functorial property (Proposition 4.2 ). The results before Section 5 do not require 𝒴 𝒴 \displaystyle\mathcal{Y} caligraphic_Y to be a hypersurface and are given for all codimensions.
Decomposition of the double point space K 2 ( f ) subscript 𝐾 2 𝑓 \displaystyle K_{2}(f) italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) Here we study Kleiman’s double points for reflection mappings. We skip many details, for which we refer to [13 , 20 ] .For this description of the double point space K 2 ( f ) superscript 𝐾 2 𝑓 \displaystyle K^{2}(f) italic_K start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) for mappings (not necessarily reflection mappings) let 𝒴 𝒴 \displaystyle\mathcal{Y} caligraphic_Y be an n 𝑛 \displaystyle n italic_n -dimensional complex manifold and assume that it admits a global coordinate system (This is for the sake of simplicity, a standard glueing process shows the results in this section to be valid in general). We write the blowup of the product of two copies of 𝒴 𝒴 \displaystyle\mathcal{Y} caligraphic_Y along the diagonal as
B 2 ( 𝒴 ) = Bl Δ 𝒴 ( 𝒴 × 𝒴 ) = { ( u , u ′ , v ) ∈ 𝒴 × 𝒴 × ℙ n − 1 ∣ v ∧ ( u ′ − u ) = 0 } , subscript 𝐵 2 𝒴 subscript Bl Δ 𝒴 𝒴 𝒴 conditional-set 𝑢 superscript 𝑢 ′ 𝑣 𝒴 𝒴 superscript ℙ 𝑛 1 𝑣 superscript 𝑢 ′ 𝑢 0 \displaystyle B_{2}(\mathcal{Y})=\operatorname{Bl}_{\Delta\mathcal{Y}}(%\mathcal{Y}\times\mathcal{Y})=\{(u,u^{\prime},v)\in\mathcal{Y}\times\mathcal{Y%}\times\mathbb{P}^{n-1}\mid v\wedge(u^{\prime}-u)=0\}, italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_Y ) = roman_Bl start_POSTSUBSCRIPT roman_Δ caligraphic_Y end_POSTSUBSCRIPT ( caligraphic_Y × caligraphic_Y ) = { ( italic_u , italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_v ) ∈ caligraphic_Y × caligraphic_Y × blackboard_P start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ∣ italic_v ∧ ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_u ) = 0 } ,
where v ∧ ( u ′ − u ) = 0 𝑣 superscript 𝑢 ′ 𝑢 0 \displaystyle v\wedge(u^{\prime}-u)=0 italic_v ∧ ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_u ) = 0 is a shortcut to indicate the vanishing of all 2 × 2 2 2 \displaystyle 2\times 2 2 × 2 minors of the matrix
( u 1 ′ − u 1 … u n ′ − u n ′ v 1 … v n ) . subscript superscript 𝑢 ′ 1 subscript 𝑢 1 … subscript superscript 𝑢 ′ 𝑛 subscript superscript 𝑢 ′ 𝑛 subscript 𝑣 1 … subscript 𝑣 𝑛 \displaystyle\left(\begin{array}[]{ccc}u^{\prime}_{1}-u_{1}&\dots&u^{\prime}_{%n}-u^{\prime}_{n}\\v_{1}&\dots&v_{n}\end{array}\right). ( start_ARRAY start_ROW start_CELL italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL … end_CELL start_CELL italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL … end_CELL start_CELL italic_v start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ) .
We write the exceptional divisor as E = Δ 𝒴 × ℙ n − 1 𝐸 Δ 𝒴 superscript ℙ 𝑛 1 \displaystyle E=\Delta\mathcal{Y}\times\mathbb{P}^{n-1} italic_E = roman_Δ caligraphic_Y × blackboard_P start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT .
Now let f : 𝒴 → 𝒵 : 𝑓 → 𝒴 𝒵 \displaystyle f\colon\mathcal{Y}\to\mathcal{Z} italic_f : caligraphic_Y → caligraphic_Z be a holomorphic mapping between manifolds (not necessarily a reflection mapping) of dimensions n 𝑛 \displaystyle n italic_n and p 𝑝 \displaystyle p italic_p , both admiting a global coordinate system. Think of u ′ − u superscript 𝑢 ′ 𝑢 \displaystyle u^{\prime}-u italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_u and f ( u ′ ) − f ( u ) 𝑓 superscript 𝑢 ′ 𝑓 𝑢 \displaystyle f(u^{\prime})-f(u) italic_f ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - italic_f ( italic_u ) as a vectors with entries in 𝒪 𝒴 × 𝒴 subscript 𝒪 𝒴 𝒴 \displaystyle\mathcal{O}_{\mathcal{Y}\times\mathcal{Y}} caligraphic_O start_POSTSUBSCRIPT caligraphic_Y × caligraphic_Y end_POSTSUBSCRIPT , of sizes n 𝑛 \displaystyle n italic_n and p 𝑝 \displaystyle p italic_p , respectively. By Hilbert Nullstellensatz, there exist a p × n 𝑝 𝑛 \displaystyle p\times n italic_p × italic_n matrix α f subscript 𝛼 𝑓 \displaystyle\alpha_{f} italic_α start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT , with entries in 𝒪 𝒴 × 𝒴 subscript 𝒪 𝒴 𝒴 \displaystyle\mathcal{O}_{\mathcal{Y}\times\mathcal{Y}} caligraphic_O start_POSTSUBSCRIPT caligraphic_Y × caligraphic_Y end_POSTSUBSCRIPT , such that
f ( u ′ ) − f ( u ) = α f ⋅ ( u ′ − u ) 𝑓 superscript 𝑢 ′ 𝑓 𝑢 ⋅ subscript 𝛼 𝑓 superscript 𝑢 ′ 𝑢 \displaystyle f(u^{\prime})-f(u)=\alpha_{f}\cdot(u^{\prime}-u) italic_f ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - italic_f ( italic_u ) = italic_α start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ⋅ ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_u )
Then, Kleiman’s double point space is
K 2 ( f ) = { ( u , u ′ , v ) ∈ B 2 ( 𝒴 ) ∣ α f ( u , u ′ ) ⋅ v = 0 } . subscript 𝐾 2 𝑓 conditional-set 𝑢 superscript 𝑢 ′ 𝑣 subscript 𝐵 2 𝒴 ⋅ subscript 𝛼 𝑓 𝑢 superscript 𝑢 ′ 𝑣 0 \displaystyle K_{2}(f)=\{(u,u^{\prime},v)\in B_{2}(\mathcal{Y})\mid\alpha_{f}(%u,u^{\prime})\cdot v=0\}. italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) = { ( italic_u , italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_v ) ∈ italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_Y ) ∣ italic_α start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_u , italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ⋅ italic_v = 0 } .
The proof that K 2 ( f ) subscript 𝐾 2 𝑓 \displaystyle K_{2}(f) italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) does not depend on α 𝛼 \displaystyle\alpha italic_α is in [10 , Proposition 3.1] . Away from the exceptional divisor, K 2 ( f ) subscript 𝐾 2 𝑓 \displaystyle K_{2}(f) italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) is just the fibered product
K 2 ( f ) ∖ E ≅ ( 𝒴 × 𝒵 𝒴 ) ∖ Δ 𝒴 , subscript 𝐾 2 𝑓 𝐸 subscript 𝒵 𝒴 𝒴 Δ 𝒴 \displaystyle K_{2}(f)\setminus E\cong(\mathcal{Y}\times_{\mathcal{Z}}\mathcal%{Y})\setminus\Delta\mathcal{Y}, italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) ∖ italic_E ≅ ( caligraphic_Y × start_POSTSUBSCRIPT caligraphic_Z end_POSTSUBSCRIPT caligraphic_Y ) ∖ roman_Δ caligraphic_Y ,
via the blowup map.On the exceptional divisor, K 2 ( f ) subscript 𝐾 2 𝑓 \displaystyle K_{2}(f) italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) keeps track of the kernel of the differential of f 𝑓 \displaystyle f italic_f , as follows:
K 2 ( f ) ∩ E = { ( u , u , v ) ∈ B 2 ( 𝒴 ) ∣ v ∈ ker d f u } . subscript 𝐾 2 𝑓 𝐸 conditional-set 𝑢 𝑢 𝑣 subscript 𝐵 2 𝒴 𝑣 kernel d subscript 𝑓 𝑢 \displaystyle K_{2}(f)\cap E=\{(u,u,v)\in B_{2}(\mathcal{Y})\mid v\in\ker%\operatorname{d}\!f_{u}\}. italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) ∩ italic_E = { ( italic_u , italic_u , italic_v ) ∈ italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_Y ) ∣ italic_v ∈ roman_ker roman_d italic_f start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT } .
Proposition 4.1 . [ 13 , Corollary 5.6] The dimension of K 2 ( f ) subscript 𝐾 2 𝑓 \displaystyle K_{2}(f) italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) is at least 2 n − p 2 𝑛 𝑝 \displaystyle 2n-p 2 italic_n - italic_p . If K 2 ( f ) subscript 𝐾 2 𝑓 \displaystyle K_{2}(f) italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) has dimension 2 n − p 2 𝑛 𝑝 \displaystyle 2n-p 2 italic_n - italic_p , then it is locally a complete intersection.
The double point spaces K 2 subscript 𝐾 2 \displaystyle K_{2} italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT enjoy the following key functorial property, very much related to the construction of reflection mappings. First, any embedding of complex manifolds, 𝒴 ↪ 𝒱 ↪ 𝒴 𝒱 \displaystyle\mathcal{Y}\hookrightarrow\mathcal{V} caligraphic_Y ↪ caligraphic_V , induces an embedding B 2 ( 𝒴 ) ↪ B 2 ( 𝒱 ) ↪ superscript 𝐵 2 𝒴 superscript 𝐵 2 𝒱 \displaystyle B^{2}(\mathcal{Y})\hookrightarrow B^{2}(\mathcal{V}) italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( caligraphic_Y ) ↪ italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( caligraphic_V ) .
Proposition 4.2 . [ 13 , Theorem 2.13] Given a mapping F : 𝒱 → 𝒵 : 𝐹 → 𝒱 𝒵 \displaystyle F\colon\mathcal{V}\to\mathcal{Z} italic_F : caligraphic_V → caligraphic_Z between complex manifolds, the double point space of the restriction f = F | 𝒴 : 𝒴 → 𝒵 \displaystyle f=F_{|_{\mathcal{Y}}}\colon\mathcal{Y}\to\mathcal{Z} italic_f = italic_F start_POSTSUBSCRIPT | start_POSTSUBSCRIPT caligraphic_Y end_POSTSUBSCRIPT end_POSTSUBSCRIPT : caligraphic_Y → caligraphic_Z is
K 2 ( f ) = K 2 ( F ) ∩ B 2 ( 𝒴 ) . subscript 𝐾 2 𝑓 subscript 𝐾 2 𝐹 subscript 𝐵 2 𝒴 \displaystyle K_{2}(f)=K_{2}(F)\cap B_{2}(\mathcal{Y}). italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) = italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_F ) ∩ italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_Y ) .
In particular, the double points of reflection mappings are slices of the double points of orbit mappings. Conveniently enough, we understand K 2 ( ω ) subscript 𝐾 2 𝜔 \displaystyle K_{2}(\omega) italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_ω ) quite well. Fixed σ ∈ W ∖ { id } 𝜎 𝑊 id \displaystyle\sigma\in W\setminus\{\operatorname{id}\} italic_σ ∈ italic_W ∖ { roman_id } , let r = dim Fix σ 𝑟 dim Fix 𝜎 \displaystyle r=\operatorname{dim}\operatorname{Fix}\sigma italic_r = roman_dim roman_Fix italic_σ and choose linear mappings ℓ σ : 𝒱 → ℂ p − r : subscript ℓ 𝜎 → 𝒱 superscript ℂ 𝑝 𝑟 \displaystyle\ell_{\sigma}\colon\mathcal{V}\to\mathbb{C}^{p-r} roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT : caligraphic_V → blackboard_C start_POSTSUPERSCRIPT italic_p - italic_r end_POSTSUPERSCRIPT and ℓ σ ⊥ : 𝒱 → ℂ r : superscript subscript ℓ 𝜎 bottom → 𝒱 superscript ℂ 𝑟 \displaystyle\ell_{\sigma}^{\bot}\colon\mathcal{V}\to\mathbb{C}^{r} roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⊥ end_POSTSUPERSCRIPT : caligraphic_V → blackboard_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT , so that
Fix σ = V ( ℓ σ ) and ( Fix σ ) ⊥ = V ( ℓ σ ⊥ ) . formulae-sequence Fix 𝜎 𝑉 subscript ℓ 𝜎 and
superscript Fix 𝜎 bottom 𝑉 superscript subscript ℓ 𝜎 bottom \displaystyle\operatorname{Fix}\sigma=V(\ell_{\sigma})\qquad\text{and}\qquad(%\operatorname{Fix}\sigma)^{\bot}=V(\ell_{\sigma}^{\bot}). roman_Fix italic_σ = italic_V ( roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ) and ( roman_Fix italic_σ ) start_POSTSUPERSCRIPT ⊥ end_POSTSUPERSCRIPT = italic_V ( roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⊥ end_POSTSUPERSCRIPT ) .
The following description of K 2 ( ω ) superscript 𝐾 2 𝜔 \displaystyle K^{2}(\omega) italic_K start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_ω ) is found (with different notation) in [17 , Theorem 7.6] :
Proposition 4.3 . The double point space K 2 ( ω ) subscript 𝐾 2 𝜔 \displaystyle K_{2}(\omega) italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_ω ) is a p 𝑝 \displaystyle p italic_p -dimensional reduced locally complete intersection, with irreducible decomposition
K 2 ( ω ) = ⋃ σ ∈ W ∖ { 1 } K 2 σ , subscript 𝐾 2 𝜔 subscript 𝜎 𝑊 1 superscript subscript 𝐾 2 𝜎 \displaystyle K_{2}(\omega)=\bigcup_{\sigma\in W\setminus\{1\}}K_{2}^{\sigma}, italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_ω ) = ⋃ start_POSTSUBSCRIPT italic_σ ∈ italic_W ∖ { 1 } end_POSTSUBSCRIPT italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ,
where K 2 σ superscript subscript 𝐾 2 𝜎 \displaystyle K_{2}^{\sigma} italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT is the blow-up of { ( u , σ u ) ∣ u ∈ 𝒱 } conditional-set 𝑢 𝜎 𝑢 𝑢 𝒱 \displaystyle\{(u,\sigma u)\mid u\in\mathcal{V}\} { ( italic_u , italic_σ italic_u ) ∣ italic_u ∈ caligraphic_V } along Δ Fix σ Δ Fix 𝜎 \displaystyle\Delta\operatorname{Fix}\sigma roman_Δ roman_Fix italic_σ , embedded in B 2 ( 𝒱 ) subscript 𝐵 2 𝒱 \displaystyle B_{2}(\mathcal{V}) italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_V ) as
K 2 σ = { ( u , σ u , v ) ∈ B 2 ( 𝒱 ) ∣ ℓ σ ⊥ ( v ) = 0 } . superscript subscript 𝐾 2 𝜎 conditional-set 𝑢 𝜎 𝑢 𝑣 superscript 𝐵 2 𝒱 superscript subscript ℓ 𝜎 bottom 𝑣 0 \displaystyle K_{2}^{\sigma}=\{(u,\sigma u,v)\in B^{2}(\mathcal{V})\mid\ell_{%\sigma}^{\bot}(v)=0\}. italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT = { ( italic_u , italic_σ italic_u , italic_v ) ∈ italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( caligraphic_V ) ∣ roman_ℓ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⊥ end_POSTSUPERSCRIPT ( italic_v ) = 0 } .
In view of Proposition 4.2 , the space K 2 subscript 𝐾 2 \displaystyle K_{2} italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT of reflection mappings must inherit a W ∖ { 1 } 𝑊 1 \displaystyle W\setminus\{1\} italic_W ∖ { 1 } -indexed decomposition:
Definition 4.4 . For each σ ∈ W ∖ { 1 } 𝜎 𝑊 1 \displaystyle\sigma\in W\setminus\{1\} italic_σ ∈ italic_W ∖ { 1 } , we let K 2 σ ( f ) = B 2 ( 𝒴 ) ∩ K 2 σ . superscript subscript 𝐾 2 𝜎 𝑓 subscript 𝐵 2 𝒴 superscript subscript 𝐾 2 𝜎 \displaystyle K_{2}^{\sigma}(f)=B_{2}(\mathcal{Y})\cap K_{2}^{\sigma}. italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) = italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_Y ) ∩ italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT .
As we just mentioned, this gives the set-theoretical decomposition
K 2 ( f ) = ⋃ σ ∈ W ∖ { 1 } K 2 σ ( f ) . subscript 𝐾 2 𝑓 subscript 𝜎 𝑊 1 superscript subscript 𝐾 2 𝜎 𝑓 \displaystyle K_{2}(f)=\bigcup_{\sigma\in W\setminus\{1\}}K_{2}^{\sigma}(f). italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) = ⋃ start_POSTSUBSCRIPT italic_σ ∈ italic_W ∖ { 1 } end_POSTSUBSCRIPT italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) .
Observe that neither K 2 ( f ) subscript 𝐾 2 𝑓 \displaystyle K_{2}(f) italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) nor K 2 σ ( f ) superscript subscript 𝐾 2 𝜎 𝑓 \displaystyle K_{2}^{\sigma}(f) italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_f ) need to be reduced, so there is no clear way to upgrade the previous decomposition into a union of complex spaces, because (to the best of the authors’ knowledge) the meaning of a union means in the category of complex spaces is unclear. In any case, since the order of W 𝑊 \displaystyle W italic_W is finite, K 2 ( ω ) subscript 𝐾 2 𝜔 \displaystyle K_{2}(\omega) italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_ω ) and K 2 σ superscript subscript 𝐾 2 𝜎 \displaystyle K_{2}^{\sigma} italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT are locally equal topological spaces at points z ∈ K 2 σ 𝑧 superscript subscript 𝐾 2 𝜎 \displaystyle z\in K_{2}^{\sigma} italic_z ∈ italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT not contained in any other K 2 τ , τ ≠ σ superscript subscript 𝐾 2 𝜏 𝜏
𝜎